精英家教网 > 高中数学 > 题目详情
8.甲、乙两人下棋,两人下成和棋的概率是$\frac{1}{2}$,甲获胜的概率是$\frac{1}{3}$,则甲不输的概率为(  )
A.$\frac{5}{6}$B.$\frac{2}{5}$C.$\frac{1}{6}$D.$\frac{1}{3}$

分析 利用互斥事件的概率加法公式即可得出.

解答 解:∵甲不输与甲、乙两人下成和棋是互斥事件.
∴根据互斥事件的概率计算公式可知:甲不输的概率P=$\frac{1}{3}$+$\frac{1}{2}$=$\frac{5}{6}$.
故选:A.

点评 本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在正四棱柱ABCD-A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan$\frac{2}{3}$,则该正四棱柱的高等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若a,b,c成等差数列,则角B的取值范围为(  )
A.(0,$\frac{π}{4}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从1~9这9个数字中任取5个数组成无重复数字的数,且个位、百位、万位上的数字必须是奇数的五位数的个数是1800.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知某县婴幼儿的身高y(cm)与年龄x(岁)的一组调查数据如下:
年龄x0.31.21.71.92.22.63.13.23.84.0
身高y637176798387919397100
求y关于x的一元线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}是等比数列,前n项和为Sn(n∈N*),且$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\frac{2}{{a}_{3}}$,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb${\;}_{n}^{2}$}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2=c2+$\sqrt{3}$ab.
(Ⅰ)求角C的值;
(Ⅱ)若b=2,c=1,求△ABC的面积;
(Ⅲ)若△ABC为锐角三角形,且c=1,求$\sqrt{3}$a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,x≤1}\\{lnx,x>1}\end{array}\right.$,若|f(x)|+a≥ax,则a的取值范围是(  )
A.[-2,0]B.[-2,1]C.(-∞,-2]D.(-∞,0]

查看答案和解析>>

同步练习册答案