分析 由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.
解答
解:如图,
过D作DH⊥AB于H,
∵BE=2AE=2,BD=ED,
∴BH=HE=1,则AH=2,BH=1,
∴DH2=AH•BH=2,则DH=$\sqrt{2}$,
在Rt△DHE中,则$DE=\sqrt{D{H}^{2}+H{E}^{2}}=\sqrt{2+1}=\sqrt{3}$,
由相交弦定理可得:CE•DE=AE•EB,
∴$CE=\frac{AE•EB}{DE}=\frac{1×2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分而不必要条件 | ||
| C. | 必要而不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A、B、C三点共线 | B. | A、B、D三点共线 | C. | A、C、D三点共线 | D. | B、C、D三点共线 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com