精英家教网 > 高中数学 > 题目详情
14.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2$\sqrt{3}$,则圆C的面积为4π.

分析 圆C:x2+y2-2ay-2=0的圆心坐标为(0,a),半径为$\sqrt{{a}^{2}+2}$,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.

解答 解:圆C:x2+y2-2ay-2=0的圆心坐标为(0,a),半径为$\sqrt{{a}^{2}+2}$,
∵直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,且|AB|=2$\sqrt{3}$,
∴圆心(0,a)到直线y=x+2a的距离d=$\frac{\left|a\right|}{\sqrt{2}}$,
即$\frac{{a}^{2}}{2}$+3=a2+2,
解得:a2=2,
故圆的半径r=2.
故圆的面积S=4π,
故答案为:4π

点评 本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.数列1$\frac{1}{2}$,2$\frac{1}{3}$,3$\frac{1}{4}$,4$\frac{1}{5}$,…的一个通项公式为$\frac{{n}^{2}+n+1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=2sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为(  )
A.y=2sin(2x+$\frac{π}{4}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{4}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-2)ex+a(x-1)2
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(  )
A.$\frac{1}{3}$+$\frac{2}{3}$πB.$\frac{1}{3}$+$\frac{\sqrt{2}}{3}$πC.$\frac{1}{3}$+$\frac{\sqrt{2}}{6}$πD.1+$\frac{\sqrt{2}}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{0}&{-2}\end{array}]$,矩阵B的逆矩阵B-1=$[\begin{array}{l}{1}&{-\frac{1}{2}}\\{0}&{2}\end{array}]$,求矩阵AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案