精英家教网 > 高中数学 > 题目详情
5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

分析 (Ⅰ)根据已知和余弦定理,可得cosB=$\frac{\sqrt{2}}{2}$,进而得到答案;
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,结合正弦型函数的图象和性质,可得$\sqrt{2}$cosA+cosC的最大值.

解答 解:(Ⅰ)∵在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
∴a2+c2-b2=$\sqrt{2}$ac.
∴cosB=$\frac{{a}^{2}{+c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,
∴$\sqrt{2}$cosA+cosC=$\sqrt{2}$cosA+cos($\frac{3π}{4}$-A)
=$\sqrt{2}$cosA-$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=sin(A+$\frac{π}{4}$).
∵A∈(0,$\frac{3π}{4}$),
∴A+$\frac{π}{4}$∈($\frac{π}{4}$,π),
故当A+$\frac{π}{4}$=$\frac{π}{2}$时,sin(A+$\frac{π}{4}$)取最大值1,
即$\sqrt{2}$cosA+cosC的最大值为1.

点评 本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=$\sqrt{3-2x-{x}^{2}}$的定义域是[-3,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某保险的基本保费为a(单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数01234≥5
保费0.85aa1.25a1.5a1.75a2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数01234≥5
概率0.300.150.200.200.100.05
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A是椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.
(I)当|AM|=|AN|时,求△AMN的面积
(II) 当2|AM|=|AN|时,证明:$\sqrt{3}$<k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(  )
A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an-an-1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN-a1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某四棱柱的三视图如图所示,则该四棱柱的体积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2$\sqrt{3}$,则圆C的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设直线l1,l2分别是函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是(  )
A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案