分析 (Ⅰ)根据已知和余弦定理,可得cosB=$\frac{\sqrt{2}}{2}$,进而得到答案;
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,结合正弦型函数的图象和性质,可得$\sqrt{2}$cosA+cosC的最大值.
解答 解:(Ⅰ)∵在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
∴a2+c2-b2=$\sqrt{2}$ac.
∴cosB=$\frac{{a}^{2}{+c}^{2}-{b}^{2}}{2ac}$=$\frac{\sqrt{2}ac}{2ac}$=$\frac{\sqrt{2}}{2}$,
∴B=$\frac{π}{4}$
(Ⅱ)由(I)得:C=$\frac{3π}{4}$-A,
∴$\sqrt{2}$cosA+cosC=$\sqrt{2}$cosA+cos($\frac{3π}{4}$-A)
=$\sqrt{2}$cosA-$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=$\frac{\sqrt{2}}{2}$cosA+$\frac{\sqrt{2}}{2}$sinA
=sin(A+$\frac{π}{4}$).
∵A∈(0,$\frac{3π}{4}$),
∴A+$\frac{π}{4}$∈($\frac{π}{4}$,π),
故当A+$\frac{π}{4}$=$\frac{π}{2}$时,sin(A+$\frac{π}{4}$)取最大值1,
即$\sqrt{2}$cosA+cosC的最大值为1.
点评 本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.
科目:高中数学 来源: 题型:解答题
| 上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
| 保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
| 一年内出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
| 概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 乙盒中黑球不多于丙盒中黑球 | B. | 乙盒中红球与丙盒中黑球一样多 | ||
| C. | 乙盒中红球不多于丙盒中红球 | D. | 乙盒中黑球与丙盒中红球一样多 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com