精英家教网 > 高中数学 > 题目详情
17.某四棱柱的三视图如图所示,则该四棱柱的体积为$\frac{3}{2}$.

分析 由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.

解答 解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,
棱柱的底面面积S=$\frac{1}{2}$×(1+2)×1=$\frac{3}{2}$,
棱柱的高为1,
故棱柱的体积V=$\frac{3}{2}$,
故答案为:$\frac{3}{2}$

点评 本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.
(1)若AB=6m,PO1=2m,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(  )
A.$\frac{7}{10}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求$\sqrt{2}$cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在区间(-1,1)上为减函数的是(  )
A.y=$\frac{1}{1-x}$B.y=cosxC.y=ln(x+1)D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=2sin(2x+$\frac{π}{6}$)的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为(  )
A.y=2sin(2x+$\frac{π}{4}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin(2x-$\frac{π}{4}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(  )
A.$\frac{1}{3}$+$\frac{2}{3}$πB.$\frac{1}{3}$+$\frac{\sqrt{2}}{3}$πC.$\frac{1}{3}$+$\frac{\sqrt{2}}{6}$πD.1+$\frac{\sqrt{2}}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足$\left\{\begin{array}{l}{y≥x-1}\\{y≥1-x}\\{y≤1}\end{array}\right.$,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案