精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

分析 (1)由题意可得a=2,b=1,则$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{4-1}=\sqrt{3}$,则椭圆C的方程可求,离心率为e=$\frac{\sqrt{3}}{2}$;
(2)设P(x0,y0),求出PA、PB所在直线方程,得到M,N的坐标,求得|AN|,|BM|.由${S}_{ABNM}=\frac{1}{2}•|AN|•|BM|$,结合P在椭圆上求得四边形ABNM的面积为定值2.

解答 (1)解:∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1过点A(2,0),B(0,1)两点,
∴a=2,b=1,则$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{4-1}=\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$,离心率为e=$\frac{\sqrt{3}}{2}$;
(2)证明:如图,
设P(x0,y0),则${k}_{PA}=\frac{{y}_{0}}{{x}_{0}-2}$,PA所在直线方程为y=$\frac{{y}_{0}}{{x}_{0}-2}(x-2)$,
取x=0,得${y}_{M}=-\frac{2{y}_{0}}{{x}_{0}-2}$;
${k}_{PB}=\frac{{y}_{0}-1}{{x}_{0}}$,PB所在直线方程为$y=\frac{{y}_{0}-1}{{x}_{0}}x+1$,
取y=0,得${x}_{N}=\frac{{x}_{0}}{1-{y}_{0}}$.
∴|AN|=$2-{x}_{N}=2-\frac{{x}_{0}}{1-{y}_{0}}=\frac{2-2{y}_{0}-{x}_{0}}{1-{y}_{0}}$,
|BM|=1-${x}_{M}=1+\frac{2{y}_{0}}{{x}_{0}-2}=\frac{{x}_{0}+2{y}_{0}-2}{{x}_{0}-2}$.
∴${S}_{ABNM}=\frac{1}{2}•|AN|•|BM|$=$\frac{1}{2}•\frac{2-2{y}_{0}-{x}_{0}}{1-{y}_{0}}•\frac{{x}_{0}+2{y}_{0}-2}{{x}_{0}-2}$
=-$\frac{1}{2}$$\frac{({x}_{0}+2{y}_{0}-2)^{2}}{(1-{y}_{0})({x}_{0}-2)}$=$\frac{1}{2}$$\frac{({x}_{0}+2{y}_{0})^{2}-4({x}_{0}+2{y}_{0})+4}{{x}_{0}{y}_{0}+2-{x}_{0}-2{y}_{0}}$=$\frac{1}{2}$$\frac{{{x}_{0}}^{2}+4{x}_{0}{y}_{0}+4{{y}_{0}}^{2}-4{x}_{0}-8{y}_{0}+4}{{x}_{0}{y}_{0}+2-{x}_{0}-2{y}_{0}}$
=$\frac{1}{2}$$\frac{4({x}_{0}{y}_{0}+2-{x}_{0}-2{y}_{0})}{{x}_{0}{y}_{0}+2-{x}_{0}-2{y}_{0}}=\frac{1}{2}×4=2$.
∴四边形ABNM的面积为定值2.

点评 本题考查椭圆的标准方程,考查了椭圆的简单性质,考查计算能力与推理论证能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4$\sqrt{2}$,|DE|=2$\sqrt{5}$,则C的焦点到准线的距离为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A是椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.
(I)当|AM|=|AN|时,求△AMN的面积
(II) 当2|AM|=|AN|时,证明:$\sqrt{3}$<k<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列A:a1,a2,…,aN (N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an-an-1≤1(n=2,3,…,N),则G(A)的元素个数不小于aN-a1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某四棱柱的三视图如图所示,则该四棱柱的体积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC的内角A、B、C的对边分别为a、b、c.已知a=$\sqrt{5}$,c=2,cosA=$\frac{2}{3}$,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2$\sqrt{3}$,则圆C的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3.
 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$);当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是②③(写出所有真命题的序列).

查看答案和解析>>

同步练习册答案