精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=(a+1)lnx+x2+1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对任意不相等的x1,x2∈(0,+∞),恒有|f(x1)-f(x2)≥4|x1-x2|成立,求非负实数a的取值范围.

分析 (Ⅰ)先求函数的定义域,再求导,分类讨论,根据导数和函数的单调性即可求函数的单调区间;
(Ⅱ)不妨设x1>x2,转化为(x1)-4x1≥f(x2)-4x2恒成立,构造函数,利用导数和函数的最值的关系即可求出a的取值范围.

解答 解:(Ⅰ)∵f(x)的定义域为(0,+∞)
∴$f'(x)=\frac{a+1}{x}+2x=\frac{{2{x^2}+a+1}}{x}$,
当a+1≥0时,f′(x)>0恒成立,
∴当a≥-1时,y=f(x)在区间(0,+∞)单调递增,
当a+1<0时,若x>$\sqrt{-\frac{a+1}{2}}$,f′(x)>0,
若0<x<$\sqrt{-\frac{a+1}{2}}$,f′(x)<0,
∴当a<-1时,函数y=f(x)在区间(0,$\sqrt{-\frac{a+1}{2}}$)上单调递减,在区间($\sqrt{-\frac{a+1}{2}}$,+∞)上单调递增,
(Ⅱ)不妨设x1>x2
又∵a≥0,
∴y=f(x)在区间(0,+∞)上单调递增|f(x1)-f(x2)|≥4|x1-x2|恒成立,等价于f(x1)-f(x2)≥4x1-4x2恒成立,
即就是f(x1)-4x1≥f(x2)-4x2恒成立
令g(x)=f(x)-4x,x∈(0,+∞),则y=g(x)为单调递增函数
即就是g'(x)≥0恒成立,
∵$g'(x)=\frac{{2{x^2}-4x+a+1}}{x}≥0$
令h(x)=2x2-4x+a+1,x∈(0,+∞),
∵h(x)min=h(1)=a-1,
∴a≥1,
故a的取值范围为[1,+∞)

点评 该题考查利用导数研究函数的单调性、最值,考查函数恒成立问题,考查转化思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是(  )
A.$\frac{2}{{\sqrt{21}}}$B.$\frac{3}{{\sqrt{21}}}$C.$\frac{4}{{\sqrt{21}}}$D.$\frac{5}{{\sqrt{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a-1)x2+bx(a,b为常数),在x=1和x=4处取得极值.
(1)求f(x);
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y1=x1lnx1,函数y2=x2-3,则${({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}$的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={y|y=|x|-2,x∈Z},B={x|x≥-2},则下列结论正确的是(  )
A.-3∈AB.A=BC.A∩B=AD.A∪B=Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等腰三角形一腰上的高是$\sqrt{3}$,这条高与底边的夹角为60°,则底边长为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在极坐标系中,O为极点,已知圆C的圆心为$(1,\frac{π}{4})$,半径r=1,点P在圆C上运动.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在墙上挂着一块边长为16cm的正方形木板,上面画了大、小两个同心圆,半径分别为2cm,6cm,某人站在3m之外向此板投镖,设投镖击中线上或没有投中木板时都不算(可重投),问:
(1)投中大圆内的概率是多少?
(2)投中小圆与大圆形成的圆环的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-1)dx=$\frac{π}{2}$-2.

查看答案和解析>>

同步练习册答案