精英家教网 > 高中数学 > 题目详情
9.如图,在墙上挂着一块边长为16cm的正方形木板,上面画了大、小两个同心圆,半径分别为2cm,6cm,某人站在3m之外向此板投镖,设投镖击中线上或没有投中木板时都不算(可重投),问:
(1)投中大圆内的概率是多少?
(2)投中小圆与大圆形成的圆环的概率是多少?

分析 本题考查的知识点是几何概型的意义,关键是要找出符合题意部分的面积,及正方形木板的面积,并将其代入几何概型计算公式中进行求解.
(1)求出正方形的面积,求出大圆的面积,利用几何概型的概率公式求出投中大圆内的概率.
(2)求出正方形的面积,求出小圆与大圆形成的圆环的面积,利用几何概型的概率公式求出投中小圆与大圆形成的圆环的概率.

解答 解:整个正方形木板的面积,即基本事件所占的区域的总面积为μΩ=16×16=256cm2
记“投中大圆内”为事件A,“投中小圆与大圆形成的圆环”为事件B,
则事件A所占区域面积为μA=π×62=36πcm2
事件B所占区域面积为μB=π×62-π×22=32πcm2
由几何概型的概率公式,
得(1)投中大圆内的概率是$\frac{36π}{256}$=$\frac{9π}{64}$;
(2)投中小圆与大圆形成的圆环的概率是$\frac{32π}{256}$=$\frac{π}{8}$.

点评 本题考查圆的面积公式、几何概型的概率公式、对立事件的概率公式等.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD=2,△PAB与△PAD都是等边三角形.
(Ⅰ)证明:CD⊥平面PBD;
(Ⅱ)求P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(a+1)lnx+x2+1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对任意不相等的x1,x2∈(0,+∞),恒有|f(x1)-f(x2)≥4|x1-x2|成立,求非负实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}是首项为0的递增数列,函数fn(x)=|sin$\frac{1}{n}$(x-an)|,x∈[an,an-1]满足:对于任意的实数m∈[0,1),fn(x)=m总有两个不同的根,则{an}的通项公式是an=$\frac{n\;(n-1)\;π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.若直线l过P且被圆C截得的线段长为4$\sqrt{3}$,则直线l的一般式方程为3x-4y+20=0或x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.复数$\frac{{{{({1+i})}^2}}}{i^3}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一质点的运动方程是s(t)=8-3t2,则该质点在[1,1+△t]这段时间内的平均速度是(  )
A.-6-3△tB.-6+3△tC.8-3△tD.8+3△t

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等比数列{an}中,若a1+a2=3,a5+a6=48,则a3+a4=(  )
A.12B.±12C.6D.±6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,则△ABC的形状一定是直角三角形.

查看答案和解析>>

同步练习册答案