| A. | $\frac{2}{{\sqrt{21}}}$ | B. | $\frac{3}{{\sqrt{21}}}$ | C. | $\frac{4}{{\sqrt{21}}}$ | D. | $\frac{5}{{\sqrt{21}}}$ |
分析 如图所示,设点A到平面BCD的距离是h.由AB、AC、AD两两垂直,利用勾股定理可得:AD,BC,CD.在△BCD中,由余弦定理可得:cos∠BCD,于是S△BCD=$\frac{1}{2}BC•CD•$sin∠BCD,利用VA-BCD=VD-ABC,即可得出.
解答 解:如图所示,设
点A到平面BCD的距离是h.
∵AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,
由勾股定理可得:AD=$\sqrt{17}$,BC=$\sqrt{5}$,CD=2$\sqrt{5}$.
在△BCD中,由余弦定理可得:cos∠BCD=$\frac{(\sqrt{5})^{2}+(2\sqrt{5})^{2}-(\sqrt{17})^{2}}{2×\sqrt{5}×2\sqrt{5}}$=$\frac{2}{5}$,
∴sin∠BCD=$\frac{\sqrt{21}}{5}$.
∴S△BCD=$\frac{1}{2}BC•CD•$sin∠BCD=$\frac{1}{2}×\sqrt{5}×2\sqrt{5}$×$\frac{\sqrt{21}}{5}$=$\sqrt{21}$.
又S△ABC=$\frac{1}{2}$AB•AC=$\frac{1}{2}×1×2$=1,
∵VA-BCD=VD-ABC,
∴$\frac{1}{3}×{S}_{△BCD}$×h=$\frac{1}{3}×{S}_{△ABC}$×AD,
∴h=$\frac{1×4}{\sqrt{21}}$=$\frac{4}{\sqrt{21}}$.
故选:C.
点评 本题考查了空间位置关系、线面面面垂直的判定与性质定理、勾股定理、余弦定理、三角形面积与三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com