分析 (I)连接AC交BD于O,连接OE,利用中位线定理得出OE∥PA,故而OE⊥平面ABCD,于是平面BED⊥平面ABCD;
(II)利用勾股定理计算OB,OE,则VE-BDP=VE-BCD.
解答
证明:(I)连接AC交BD于O,连接OE.
∵底面ABCD是菱形,
∴O是AC的中点,又E是PC的中点,
∴OE∥PA,又PA⊥平面ABCD,
∴OE⊥平面ABCD,
∵OE?平面BDE,
∴平面BDE⊥平面ABCD.
(II)∵AB=2,四边形ABCD是菱形,∠ABC=60°,
∴AC=2,OB=OD=$\sqrt{3}$,
又OE⊥BD,∠BED=90°,∴OE=OB=$\sqrt{3}$,∴PA=2OE=2$\sqrt{3}$.
∴VE-BDP=VP-BCD-VE-BCD=VE-BCD=$\frac{1}{3}$S△BCD•OE=$\frac{1}{3}×\frac{1}{2}×2×2×\frac{\sqrt{3}}{2}×\sqrt{3}$=1.
点评 本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{{\sqrt{21}}}$ | B. | $\frac{3}{{\sqrt{21}}}$ | C. | $\frac{4}{{\sqrt{21}}}$ | D. | $\frac{5}{{\sqrt{21}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -π+arcsin$\frac{\sqrt{2}}{4}$ | B. | -π-arcsin$\frac{\sqrt{2}}{4}$ | C. | -$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$ | D. | -2π+arcsin$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{32}$,0) | B. | (-$\frac{1}{16}$,0) | C. | (0,$\frac{1}{32}$) | D. | (0,$\frac{1}{16}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com