精英家教网 > 高中数学 > 题目详情
1.已知sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),则x的值为(  )
A.-π+arcsin$\frac{\sqrt{2}}{4}$B.-π-arcsin$\frac{\sqrt{2}}{4}$C.-$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$D.-2π+arcsin$\frac{\sqrt{2}}{4}$

分析 反正弦函数的定义很性质,诱导公式可得 x+π=arcsin(-$\frac{\sqrt{2}}{4}$),由此求得x的值.

解答 解:∵sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),∴sin(x+π)=-$\frac{\sqrt{2}}{4}$,x+π∈(-$\frac{π}{2}$,0),
∴x+π=arcsin(-$\frac{\sqrt{2}}{4}$)=-arcsin$\frac{\sqrt{2}}{4}$,∴x=π-arcsin$\frac{\sqrt{2}}{4}$,
故选:B.

点评 本题主要考查反正弦函数的定义很性质,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.不等式(x+2)3(x+3)4(x-1)<0的解集是(  )
A.-2<x<1B.-3<x<1C.-3<x<-2D.x>1或x<-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A,B,C,D为圆O上的四点,直线PA切圆O于点A,PA∥BD,AC与BD相交于G点.
(1)求证:点A为劣弧$\widehat{BD}$的中点.
(2)若AC=6,AB=3,BC=4,求BG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\frac{1}{3}$x${\;}^{3}+\frac{1}{2}$(b-1)x2+cx(b,c为常数),若f(x)在x=1和x=3处取得极值,则b=5,c=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD为菱形,∠ABC=60°,PA⊥平面ABCD,E为PC的中点.
(Ⅰ)证明:平面BED⊥平面ABCD;
(Ⅱ)若∠BED=90°,AB=2,求三棱锥E-BDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线y=kx+b(b<0)是曲线y=ex-2的切线,也是曲线y=lnx的切线,则b=-1 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD=2,△PAB与△PAD都是等边三角形.
(Ⅰ)证明:CD⊥平面PBD;
(Ⅱ)求P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AB⊥AD,AB=3,CD=2,PD=AD=5.E是PD上一点.
(1)若PB∥平面ACE,求$\frac{PE}{ED}$的值;
(2)若E是PD中点,过点E作平面α∥平面PBC,平面α与棱PA交于F,求三棱锥P-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{an}是首项为0的递增数列,函数fn(x)=|sin$\frac{1}{n}$(x-an)|,x∈[an,an-1]满足:对于任意的实数m∈[0,1),fn(x)=m总有两个不同的根,则{an}的通项公式是an=$\frac{n\;(n-1)\;π}{2}$.

查看答案和解析>>

同步练习册答案