精英家教网 > 高中数学 > 题目详情
6.若直线y=kx+b(b<0)是曲线y=ex-2的切线,也是曲线y=lnx的切线,则b=-1 .

分析 分别设出直线与两曲线的切点坐标,求出导数值,得到两切线方程,由两切线重合得答斜率和截距相等,从而求得切线方程得答案.

解答 解:设y=kx+b与y=ex-2和y=lnx的切点分别为(x1,${e}^{{x}_{1}-2}$)、(x2,lnx2);
由导数的几何意义可得k=${e}^{{x}_{1}-2}$=$\frac{1}{{x}_{2}}$,
曲线y=ex-2在(x1,${e}^{{x}_{1}-2}$)处的切线方程为y-${e}^{{x}_{1}-2}$=${e}^{{x}_{1}-2}$(x-x1),
即y=${e}^{{x}_{1}-2}x+(1-{x}_{1}){e}^{{x}_{1}-2}$,
曲线y=lnx在点(x2,lnx2)处的切线方程为y-$ln{x}_{2}=\frac{1}{{x}_{2}}(x-{x}_{2})$,
即$y=\frac{1}{{x}_{2}}x+ln{x}_{2}-1$,
则$\left\{\begin{array}{l}{{e}^{{x}_{1}-2}=\frac{1}{{x}_{2}}}\\{(1-{x}_{1}){e}^{{x}_{1}-2}=ln{x}_{2}-1}\end{array}\right.$,解得x2=1.
∴切线方程为y=x-1,即b=-1.
故答案为:-1.

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.(1-x)4(1-$\sqrt{x}$)3的展开式中x2的系数是(  )
A.-3B.-6C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是定义在R上的函数,若函数y=f(x+1)为偶函数,且当x≥1时,有f(x)=1-2x,设a=f(${\frac{3}{2}}$),b=f(${\frac{2}{3}}$),c=f(${\frac{1}{3}}$),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(Ⅱ)证明:当x>1时,(x+1)(x+e-x)f(x)>2(1+$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),则x的值为(  )
A.-π+arcsin$\frac{\sqrt{2}}{4}$B.-π-arcsin$\frac{\sqrt{2}}{4}$C.-$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$D.-2π+arcsin$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.曲线y=$\frac{x}{x+1}$在点(1,$\frac{1}{2}$)处的切线方程为x-4y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{(a-1)x+4,x≤7}\\{2{a}^{x-6},x>7}\end{array}\right.$(a>0,a≠1),bn=f(n)(n∈N*),{bn}是递减数列,则a的取值范围($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|x2-2x≤0},N={x|log2(x-1)<1},则M∪N=(  )
A.[0,3)B.[0,3]C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$y=\frac{2sinx}{πx}$过点P(π,0)的切线方程是(  )
A.x+y-π=0B.2x+2y-π=0C.2x-π2y-2π=0D.2x+π2y-2π=0

查看答案和解析>>

同步练习册答案