精英家教网 > 高中数学 > 题目详情
9.已知f(x)=$\frac{1}{3}$x${\;}^{3}+\frac{1}{2}$(b-1)x2+cx(b,c为常数),若f(x)在x=1和x=3处取得极值,则b=5,c=3.

分析 先求出 f′(x)=x2+(b-1)x+c,再根据f(x)在x=1处和x=3处取得极值可得,1和3是方程x2+(b-1)x+c=0的两个根,再利用根与系数的关系求出 b,c的值即可.

解答 解:f′(x)=x2+(b-1)x+c,
再由f(x)在x=1处和x=3处取得极值,
可得,1和3是方程 x2+(b-1)x+c=0的两个根,
∴1+3=b-1,1×3=c,解得  b=5,c=3,
故答案为:5,3.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.△ABC中,∠C=90°,点M在边BC上,且满足BC=3BM,若sin∠BAM=$\frac{1}{5}$,则sin∠BAC=(  )
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设L为曲线C:y=$\frac{lnx}{x}$在点(1,0)处的切线.
(1)求L的方程;
(2)证明:曲线C不可能在直线L的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是定义在R上的函数,若函数y=f(x+1)为偶函数,且当x≥1时,有f(x)=1-2x,设a=f(${\frac{3}{2}}$),b=f(${\frac{2}{3}}$),c=f(${\frac{1}{3}}$),则(  )
A.c<b<aB.b<a<cC.c<a<bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是(  )
A.$\frac{2}{{\sqrt{21}}}$B.$\frac{3}{{\sqrt{21}}}$C.$\frac{4}{{\sqrt{21}}}$D.$\frac{5}{{\sqrt{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(Ⅱ)证明:当x>1时,(x+1)(x+e-x)f(x)>2(1+$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知sinx=$\frac{\sqrt{2}}{4}$,x∈(-$\frac{3π}{2}$,-π),则x的值为(  )
A.-π+arcsin$\frac{\sqrt{2}}{4}$B.-π-arcsin$\frac{\sqrt{2}}{4}$C.-$\frac{3π}{2}$+arcsin$\frac{\sqrt{2}}{4}$D.-2π+arcsin$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{(a-1)x+4,x≤7}\\{2{a}^{x-6},x>7}\end{array}\right.$(a>0,a≠1),bn=f(n)(n∈N*),{bn}是递减数列,则a的取值范围($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等腰三角形一腰上的高是$\sqrt{3}$,这条高与底边的夹角为60°,则底边长为2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案