精英家教网 > 高中数学 > 题目详情
19.不查表求tan105°的值为-2-$\sqrt{3}$.

分析 根据tan105°=tan(60°+45°),利用两角和的正切公式求得它的值.

解答 解:tan105°=tan(60°+45°)=$\frac{tan60°+tan45°}{1-tan60°tan45°}$=$\frac{\sqrt{3}+1}{1-\sqrt{3}•1}$=-2-$\sqrt{3}$,
故答案为:-2-$\sqrt{3}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某城市个人家庭用车的月均消费汽油费X~N(900,400)(单位:元),试求:
(Ⅰ)该城市个人家庭用车的月均消费汽油费在(900,920)(单位:元)范围内的人数所占的百分比;
(Ⅱ)该城市个人家庭用车的月汽油消费超过940元的人数所占的百分比;
(Ⅲ)如果该城市个人家庭用车的人数是10万人,市政府想利用经济手段控制汽油消耗,制定了下列专项税收如表:
个人家庭用车消费汽油费≤880元/月880~920元/月920~940元/月≥940元/月
税 率不纳税0.010.020.05
请用数据说明该城市在此税收上设计是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{k(x+2),x≤0}\\{-lnx,x>0}\end{array}\right.$(k<0),若函数y=f(f(x))-1有3个零点,则实数k的取值范围为k<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,圆C与圆D半径分别为r1,r2,相交于A,B两点,直线l1过点A,分别交圆C、圆D于点M、N(M、N在A的异侧),直线l2过点B,分别交圆C、圆D于点P,Q(P、Q在B的异侧),且l1平行于
l2,点C,D在l1与l2之间.
(1)求证:四边形MNQP为平行四边形;
(2)若四边形MABP面积与四边形NABQ面积相等,求证:线段AB与线段IJ互相平分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{1}{2}$,点F1,F2是椭圆E的左、右焦点,过定点Q(0,2)的动直线l与椭圆E交于A,B两点,当F1,A,B共线时,△F2AB的周长为8.
(1)求椭圆E的标准方程;
(2)设弦AB的中点为D,点E(0,t)在y轴上,且满足DE⊥AB,试求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是(  )
A.$\frac{2}{{\sqrt{21}}}$B.$\frac{3}{{\sqrt{21}}}$C.$\frac{4}{{\sqrt{21}}}$D.$\frac{5}{{\sqrt{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长都为1),则该多面体的体积为$\frac{5}{6}$,表面积为$\frac{9+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{-2x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$,若函数g(x)=f(x)-a恰有三个互不相同的零点x1,x2,x3,则x1x2x3的取值范围是(  )
A.(-$\frac{1}{32}$,0)B.(-$\frac{1}{16}$,0)C.(0,$\frac{1}{32}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={y|y=|x|-2,x∈Z},B={x|x≥-2},则下列结论正确的是(  )
A.-3∈AB.A=BC.A∩B=AD.A∪B=Z

查看答案和解析>>

同步练习册答案