| A. | 6π | B. | $\frac{16π}{3}$ | C. | $\frac{40π}{9}$ | D. | $\frac{8π}{3}$ |
分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,代入R=$\sqrt{{r}^{2}+{d}^{2}}$,可得球的半径R,然后求解表面积.
解答 解:根据已知中底面△ABC是边长为2的正三角形,SC⊥面ABC,SC=2,
可得此三棱锥外接球,即为以△ABC为底面以SC为高的正三棱柱的外接球,![]()
∵△ABC是边长为1的正三角形,
∴△ABC的外接圆半径r=$\frac{\sqrt{3}}{3}$,球心到△ABC的外接圆圆心的距离d=1,
故球的半径R=$\sqrt{{r}^{2}+{d}^{2}}$=$\sqrt{{(\frac{\sqrt{3}}{3})}^{2}+{1}^{2}}$=$\frac{2\sqrt{3}}{3}$.
三棱锥S-ABC外接球的表面积为:4π${×(\frac{2\sqrt{3}}{3})}^{2}$=$\frac{16π}{3}$.
故选:B.
点评 本题考查的知识点是球内接多面体,熟练掌握球的半径R公式R=$\sqrt{{r}^{2}+{d}^{2}}$,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2,3,4} | B. | {1,2,3} | C. | {0,1,2} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1:\sqrt{2}:\sqrt{3}$ | B. | $2:\sqrt{3}:1$ | C. | $1:\sqrt{3}:2$ | D. | $\sqrt{2}:1:\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com