精英家教网 > 高中数学 > 题目详情
9.已知实数x,y满足$\left\{{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}}\right.$,则目标函数z=3y-2x的最大值为9.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}}\right.$作出可行域如图,

化目标函数z=3y-2x为$y=\frac{2}{3}x+\frac{z}{3}$,
由图可知,当直线$y=\frac{2}{3}x+\frac{z}{3}$过C(0,3)时,直线在y轴上的截距最大,z有最大值,等于3×3-2×0=9.
故答案为:9.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠DCF=60°,AD⊥CD,平面CDEF⊥平面ABCD.
(1)求异面直线BE与CF所成角的余弦值;
(2)证明:直线CE⊥平面ADF;
(3)已知P为棱BC上的点,且二面角P-DF-A为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c分别是△ABC的内角A,B,C所对的边,且c=2,sinC(cosB-$\sqrt{3}$sinB)=sinA.
(1)求角C的大小;
(2)若cosA=$\frac{2\sqrt{2}}{3}$,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数y=lg(x2+ax+a+$\frac{5}{4}$)的定义域为R,则a的取值范围为(-1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在三棱锥S-ABC中,△ABC是边长为1的正三角形,SC⊥面ABC,SC=2,则三棱锥S-ABC外接球的表面积为(  )
A.B.$\frac{16π}{3}$C.$\frac{40π}{9}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}}\right.(α为参数)$,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}(t为参数)}\right.$.以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的直角坐标方程和直线l的极坐标方程;
(2)若P(x,y)为曲线C上的动点,求点P到直线l的距离d的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A=$\{\left.z\right|bi•\overline z-bi•z+2=0,b∈R,z∈C\}$,B={z||z|=1,z∈C},若A∩B=∅,则b的取值范围是(  )
A.(-1,1)B.[-1,1]C.(-1,0)∪(0,1)D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直三棱锥ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{30}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S的取值范围是[-3,6]

查看答案和解析>>

同步练习册答案