精英家教网 > 高中数学 > 题目详情
20.已知a,b,c分别是△ABC的内角A,B,C所对的边,且c=2,sinC(cosB-$\sqrt{3}$sinB)=sinA.
(1)求角C的大小;
(2)若cosA=$\frac{2\sqrt{2}}{3}$,求边b的长.

分析 (1)已知等式利用正弦定理及两角和与差的正弦函数公式化简,整理求出tanC的值,即可确定出C的度数;
(2)由cosA的值求出sinA的值,利用两角和与差的正弦函数公式化简sin(A+C),把各自的值代入求出sin(A+C)的值,即为sinB的值,再由c,sinC的值,利用正弦定理求出b的值即可.

解答 解:(1)由题意得sinC(cosB-$\sqrt{3}$sinB)=sinA,
整理得:sinCcosB-$\sqrt{3}$sinBsinC=sinA=sin(B+C)=sinBcosC+sinCcosB,即-$\sqrt{3}$sinBsinC=sinBcosC,
∵sinB≠0,∴tanC=-$\frac{\sqrt{3}}{3}$,
∵C为三角形内角,
∴C=$\frac{5π}{6}$;
(2)∵cosA=$\frac{2\sqrt{2}}{3}$,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{1}{3}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{1}{3}$×(-$\frac{\sqrt{3}}{2}$)+$\frac{2\sqrt{2}}{3}$×$\frac{1}{2}$=$\frac{2\sqrt{2}-\sqrt{3}}{6}$,
由正弦定理得:$\frac{b}{sinB}$=$\frac{c}{sinC}$,
则b=$\frac{csinB}{sinC}$=$\frac{4\sqrt{2}-2\sqrt{3}}{3}$.

点评 此题考查了正弦定理,两角和与差的正弦函数公式,以及诱导公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),则sin(2α-$\frac{π}{2}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=a(实数a为常数),a2=2,Sn是其前n项和,且Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.数列{bn}是等比数列,b1=2,a4恰为S4与b2-1的等比中项.
(Ⅰ)证明:数列{an}是等差数列;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)若c1=$\frac{3}{2}$,当n≥2时cn=$\frac{1}{{b}_{n-1}+1}$+$\frac{1}{{b}_{n-1}+2}$+…+$\frac{1}{{b}_{n}}$,{cn}的前n项和为Tn,求证:对任意n≥2,都有12Tn≥6n+13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sinα=$\frac{\sqrt{2}}{3}$,α∈(0,$\frac{π}{2}$),则cos(π-α)=$-\frac{\sqrt{7}}{3}$,cos2α=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若指数函数f(x)的图象过点(-2,4),则f(3)=$\frac{1}{8}$;不等式f(x)+f(-x)<$\frac{5}{2}$的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆C:x2+y2-2ax+4ay+5a2-25=0的圆心在直线l1:x+y+2=0上,则a=2;圆C被直线l2:3x+4y-5=0截得的弦长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足$\left\{{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}}\right.$,则目标函数z=3y-2x的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{OA}$=(3,-4)$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(2m,m+1)若$\overrightarrow{AB}$∥$\overrightarrow{OC}$,则实数m的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.3D.-3

查看答案和解析>>

同步练习册答案