精英家教网 > 高中数学 > 题目详情
10.已知x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

分析 根据约束条件画图,判断当直线与圆相切时,取最大值,运用直线与圆的位置关系,注意圆心,半径的运用得出$\frac{|k|}{\sqrt{{2}^{2}+1}}$≤2.

解答 解:∵x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,
∴根据阴影部分可得出当直线与圆相切时,取最大值,
y=-2x+k,
$\frac{|k|}{\sqrt{{2}^{2}+1}}$≤2,
即k$≤2\sqrt{5}$
所以最大值为2$\sqrt{5}$,
故选:D

点评 本题考查了运用线性规划问题,数形结合的思想求解二元式子的最值问题,关键是确定目标函数,画图.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=sin(x-\frac{3π}{2})cos(\frac{π}{2}-x)+cosxcos(π-x)$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当$x∈[\frac{π}{4},\frac{3π}{4}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设i是虚数单位,$\overline{z}$是复数z的共轭复数,若复数z=3-i,则z•$\overline{z}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4ax(a>0)的焦点恰好是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两焦点间线段的一个三等分点,则双曲线的渐近线方程为$y=±2\sqrt{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n和Sn=$\frac{3}{2}{n^2}+\frac{5}{2}$n,数列{bn}的通项公式bn=5n+2.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{{a_n}{b_n}}}$,求证:$\sum_{i=1}^n{c_i}<\frac{2}{25}$;
(3)若数列{an}与{bn}中相同的项由小到大构成的数列为{dn},求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一汽车4S店新进A,B,C三类轿车,每类轿车的数量如下表:
类别ABC
数量432
同一类轿车完全相同,现准备提取一部分车去参加车展.
(Ⅰ)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;
(Ⅱ)若一次性提取4辆车,其中A,B,C三种型号的车辆数分别记为a,b,c,记ξ为a,b,c的最大值,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若点(a,9)在函数$y={(\sqrt{3})^x}$的图象上,则${log_{\sqrt{2}}}$a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在五面体ABCDEF中,AB∥CD∥EF,CD=EF=CF=2AB=2AD=2,∠DCF=60°,AD⊥CD,平面CDEF⊥平面ABCD.
(1)求异面直线BE与CF所成角的余弦值;
(2)证明:直线CE⊥平面ADF;
(3)已知P为棱BC上的点,且二面角P-DF-A为60°,求PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c分别是△ABC的内角A,B,C所对的边,且c=2,sinC(cosB-$\sqrt{3}$sinB)=sinA.
(1)求角C的大小;
(2)若cosA=$\frac{2\sqrt{2}}{3}$,求边b的长.

查看答案和解析>>

同步练习册答案