精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n和Sn=$\frac{3}{2}{n^2}+\frac{5}{2}$n,数列{bn}的通项公式bn=5n+2.
(1)求数列{an}的通项公式;
(2)设cn=$\frac{1}{{{a_n}{b_n}}}$,求证:$\sum_{i=1}^n{c_i}<\frac{2}{25}$;
(3)若数列{an}与{bn}中相同的项由小到大构成的数列为{dn},求数列{dn}的前n项和Tn

分析 (1)当n=1时,求出首项,利用an=Sn-Sn-1,求解an=3n+1.
(2)利用${c}_{n}=\frac{1}{(3n+1)(5n+2)}$,利用放缩法推出$\frac{1}{5}(\frac{1}{3n-\frac{1}{2}}-\frac{1}{3n+\frac{5}{2}})$,然后推出结果即可.
(3)利用数列{an}与{bn}中相同的项,得到3n+1=5m+2(m,n∈N*),通过令2m+1=3p(p∈N*)通过2m=3p-1=2p+p-1,转化数列{dn}的通项公式为dn=15n-8,得到公差15,求解数列的和即可.

解答 解:(1)当n=1时,${a_1}={S_1}=\frac{3}{2}×{1^2}+\frac{5}{2}×1=4$…(1分)
当n>1时,${a_n}={S_n}-{S_{n-1}}=\frac{3}{2}{n^2}+\frac{5}{2}n-\frac{3}{2}{(n-1)^2}-\frac{5}{2}(n-1)=3n+1$…(2分)
∵当n=1时,3×1+1=4=a1
∴an=3n+1…(3分)
(2)∵${c_n}=\frac{1}{(3n+1)(5n+2)}=\frac{3}{5}×\frac{1}{{(3n+1)(3n+\frac{6}{5})}}<\frac{3}{5}×\frac{1}{{{{(3n+1)}^2}}}<\frac{3}{5}×\frac{1}{{{{(3n+1)}^2}-{{(\frac{3}{2})}^2}}}$
=$\frac{1}{5}(\frac{1}{{3n-\frac{1}{2}}}-\frac{1}{{3n+\frac{5}{2}}})$…(6分)
∴$\sum_{i=1}^n{c_i}<\frac{1}{5}(\frac{1}{{\frac{5}{2}}}-\frac{1}{{\frac{11}{2}}}+\frac{1}{{\frac{11}{2}}}-\frac{1}{{\frac{17}{2}}}+…+\frac{1}{{3n-\frac{1}{2}}}-\frac{1}{{3n+\frac{5}{2}}})$…(8分)
=$\frac{1}{5}(\frac{2}{5}-\frac{1}{{3n+\frac{5}{2}}})<\frac{1}{5}×\frac{2}{5}=\frac{2}{25}$…(9分)
(3)令3n+1=5m+2(m,n∈N*)∴3n=5m+1=3m+2m+1
令2m+1=3p(p∈N*)∴2m=3p-1=2p+p-1
令p-1=2k(k∈N)∴p=2k+1,代入上式可得m=3k+1,n=5k+2(k∈N)
∴n=5(k-1)+2=5k-3(k∈N*)…(11分)
∴dk=3(5k-3)+1=15k-8∴数列{dn}的通项公式为dn=15n-8…(12分)
∵dn+1-dn=15(n+1)-8-15n+8=15
∴数列{dn}是首项d1=7,公差为15的等差数列 …(13分)
∴${T_n}=\frac{{n({d_1}+{d_n})}}{2}=\frac{n(7+15n-8)}{2}=\frac{15}{2}{n^2}-\frac{1}{2}n$…(14分)

点评 本题考查数列的求和,数列与不等式相结合,数列的函数的特征,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.有大小形状完全相同的4个红球,2个白球,放入如图所示的九个格子中,每个格子至多放入1个小球,相邻格子(即有公共边的两个正方形)中放入的小球不同色,则不同的方法共有(  )
A.32种B.40种C.48种D.56种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆(x-2)2+y2=2相切,则此双曲线的离心率等于(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和为Sn,公比为q,若a3=2S2+1,a4=2S3+1,则q等于(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在一次射击考试中,编号分别为A1,A2,A3,A4的四名男生的成绩依次为6,8,8,9环,编号分别为B1,B2,B3的三名女生的成绩依次为7,6,10环,从这七名学生中随机选出二人.
(1)用学生的编号列出所有的可能结果;
(2)求这2人射击的环数之和小于15的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图:$\widehat{BCD}$是直径为2$\sqrt{2}$的半圆,O为圆心,C是$\widehat{BD}$上一点,且$\widehat{BC}=2\widehat{CD}$.DF⊥CD,且DF=2,BF=2$\sqrt{3}$,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.
(Ⅰ)求证:QR∥平面BCD;
(Ⅱ)求平面BCF与平面BDF所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.书架上有语文、数学、英语书若干本,它们的数量比依次是2:4:5,现用分层抽样的方法从书架上抽取一个样本,若抽出的语文书为10本,则应抽出的英语书25本.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sinα=$\frac{\sqrt{2}}{3}$,α∈(0,$\frac{π}{2}$),则cos(π-α)=$-\frac{\sqrt{7}}{3}$,cos2α=$\frac{5}{9}$.

查看答案和解析>>

同步练习册答案