精英家教网 > 高中数学 > 题目详情
18.抛物线y2=4ax(a>0)的焦点恰好是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两焦点间线段的一个三等分点,则双曲线的渐近线方程为$y=±2\sqrt{2}x$.

分析 求出抛物线的焦点坐标,双曲线的焦点坐标,利用已知条件,推出关系式求解双曲线的渐近线方程即可.

解答 解:抛物线y2=4ax(a>0)的焦点(a,0)恰好是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两焦点间线段的一个三等分点,
可得3a=c,又a2=c2-b2,9a2=a2+b2,可得$\frac{b}{a}=2\sqrt{2}$,
所以双曲线的渐近线方程为:y=$±2\sqrt{2}x$.
故答案为:$y=±2\sqrt{2}x$、

点评 本题给出双曲线与已知抛物线有相同焦点,在已知双曲线的离心率的情况下求其渐近线方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),g(x)=2ax-2b
(1)若$θ∈[{0,\frac{π}{2}}]$时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2co{s}^{2}α}\\{y=sin2α}\end{array}\right.$(α是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{1}{sinθ-cosθ}$.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1上的任意一点P到曲线C2的最小距离,并求出此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C-FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an}的前n项和为Sn,公比为q,若a3=2S2+1,a4=2S3+1,则q等于(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的中心为O,它的一个顶点为(0,1),离心率为$\frac{{\sqrt{2}}}{2}$,过其右焦点的直线交该椭圆于A,B两点.
(1)求这个椭圆的方程;
(2)若OA⊥OB,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:$\widehat{BCD}$是直径为$2\sqrt{2}$的半圆,O为圆心,C是$\widehat{BD}$上一点,且$\widehat{BC}=2\widehat{CD}$.DF⊥CD,且DF=2,$BF=2\sqrt{3}$,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.
(Ⅰ)求证:面BCE⊥面CDF;
(Ⅱ)求证:QR∥平面BCD;
(Ⅲ)求三棱锥F-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=a(实数a为常数),a2=2,Sn是其前n项和,且Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.数列{bn}是等比数列,b1=2,a4恰为S4与b2-1的等比中项.
(Ⅰ)证明:数列{an}是等差数列;
(Ⅱ)求数列{bn}的通项公式;
(Ⅲ)若c1=$\frac{3}{2}$,当n≥2时cn=$\frac{1}{{b}_{n-1}+1}$+$\frac{1}{{b}_{n-1}+2}$+…+$\frac{1}{{b}_{n}}$,{cn}的前n项和为Tn,求证:对任意n≥2,都有12Tn≥6n+13.

查看答案和解析>>

同步练习册答案