精英家教网 > 高中数学 > 题目详情
8.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),g(x)=2ax-2b
(1)若$θ∈[{0,\frac{π}{2}}]$时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

分析 (1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2-2bt-a+b在t∈[0,1]的最大值,由二次函数区间的最值可得;
(2)令sinθ=t∈[-1,1],由恒成立和最大值可得可得二次函数的顶点坐标为(0,-1),进而可得ab的值,可得解析式.

解答 解:(1)令sinθ=t∈[0,1],问题等价于求f(t)=2at2-2bt-a+b在t∈[0,1]的最大值,
∵a>0,抛物线开口向上,二次函数的对称轴$t=\frac{b}{2a}$,
由二次函数区间的最值可得$f{(x)_{max}}=\left\{\begin{array}{l}f(1)=a-b(b≤a)\\ f(0)=b-a(b>a)\end{array}\right.=|a-b|$
(2)令sinθ=t∈[-1,1],则|f(t)|≤1可推得|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,
∵a>0,∴g(sinθ)max=g(1)=2,而g(1)=2a-2b=2
而f(0)=b-a=-1而t∈[-1,1]时,|f(t)|≤1,即-1≤f(t)≤1,
结合f(0)=-1可知二次函数的顶点坐标为(0,-1)
∴b=0,a=1,∴f(x)=2x2-1.

点评 本题考查二次函数的性质,涉及三角换元和等价转化,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知cosα=$\frac{1}{17}$,cos(α+β)=-$\frac{47}{51}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,则cosβ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知m,n,i,j均为正整数,记ai,j为矩阵${A_{n×m}}=({\begin{array}{l}1&{{a_{1,2}}}&…&{{a_{1,m}}}\\ 2&{{a_{2,2}}}&…&{{a_{2,m}}}\\…&…&…&…\\{{a_{n,1}}}&{{a_{n,2}}}&…&{{a_{n,m}}}\end{array}})$中第i行、第j列的元素,且ai,j+1=ai,j+1,2ai+2,j=ai+1,j+ai,j(其中i≤n-2,j≤m-2);给出结论:①a5,6=$\frac{13}{4}$;②a2,1+a2,2+…+a2,m=2m;③${a_{n+1,m}}={a_{n,m}}+{({-\frac{1}{2}})^n}$④若m为常数,则$\lim_{n→∞}{a_{n,m}}=\frac{2+3m}{3}$.其中正确的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足an+1=an+2n,n=1,2,3,…,且bn=$\frac{1}{{a}_{n}}$,a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和为Tn,证明:对任意n∈N*,都有1≤Tn<2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(2x+$\frac{π}{3}$)+cos(2x+$\frac{2}{3}π$),g(x)=cos2x.
(Ⅰ)若$α∈(\frac{π}{4},\frac{π}{2})$,且f(α)=-$\frac{3}{5}\sqrt{3}$,求g(α)的值;
(Ⅱ)若x$∈[-\frac{π}{6},\frac{π}{3}]$,求f(x)+g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以坐标原点O为顶点,x轴的正半轴为始边,角α,β,θ的终边分别为OA,OB,OC,OC为∠AOB的角平分线,若$tanθ=\frac{1}{3}$,则tan(α+β)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=sin(x-\frac{3π}{2})cos(\frac{π}{2}-x)+cosxcos(π-x)$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当$x∈[\frac{π}{4},\frac{3π}{4}]$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在边长为1的菱形ABCD中,∠A=$\frac{2π}{3}$,若点P为对角线AC上一点,则$\overrightarrow{PB}$•$\overrightarrow{PD}$的最大值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4ax(a>0)的焦点恰好是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两焦点间线段的一个三等分点,则双曲线的渐近线方程为$y=±2\sqrt{2}x$.

查看答案和解析>>

同步练习册答案