精英家教网 > 高中数学 > 题目详情
17.在边长为1的菱形ABCD中,∠A=$\frac{2π}{3}$,若点P为对角线AC上一点,则$\overrightarrow{PB}$•$\overrightarrow{PD}$的最大值为-$\frac{1}{2}$.

分析 由题意可得△ABC、△ACD都是等边三角形,AP∈[0,1],再利用两个向量的加减法及其几何意义求得$\overrightarrow{PB}$•$\overrightarrow{PD}$=${(AP-\frac{1}{2})}^{2}$-$\frac{3}{4}$,再利用二次函数的性质求得$\overrightarrow{PB}$•$\overrightarrow{PD}$的最大值.

解答 解:由题意可得△ABC、△ACD都是等边三角形,∠PAB=∠PAD=$\frac{π}{3}$,AP∈[0,1],
则$\overrightarrow{PB}$•$\overrightarrow{PD}$=($\overrightarrow{AB}$-$\overrightarrow{AP}$)•($\overrightarrow{AD}$-$\overrightarrow{AP}$)=${\overrightarrow{AP}}^{2}$-$\overrightarrow{AP}$($\overrightarrow{AB}$+$\overrightarrow{AD}$)+$\overrightarrow{AB}•\overrightarrow{AD}$=${\overrightarrow{AP}}^{2}$-$\overrightarrow{AP}•\overrightarrow{AC}$+1×1cos∠BAD
=AP2-AP-$\frac{1}{2}$=${(AP-\frac{1}{2})}^{2}$-$\frac{3}{4}$,
故当AP=0或AP=1时,$\overrightarrow{PB}$•$\overrightarrow{PD}$的最大值为-$\frac{1}{2}$,
故答案为:$-\frac{1}{2}$.

点评 本题主要考查两个向量的加减法及其几何意义,两个向量的数量积的定义,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在正方体ABCD-A1B1C1D1中.
①经过点A垂直于平面A1BD的直线也垂直于平面B1D1C;
②设O为AC和BD的交点,则异面直线AB1与OC1所成的角是$\frac{π}{6}$;
③若正方体的棱长为2,则经过棱D1C1,B1C1,BB1中点的正方体的截面面积为3$\sqrt{3}$;
④若点P是正方形ABCD内(包括边界)的动点,点Q在对角线A1C上,且满足PQ⊥A1C,PA=PQ,则点P的轨迹是线段.
以上命题正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),g(x)=2ax-2b
(1)若$θ∈[{0,\frac{π}{2}}]$时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+1,(x∈R)在x=3取得极小值
(1)求函数f(x)的极小值是-5,求f(x);
(2)若a=-4时,函数f(x)存在极大值,求b的取值范围及f(x)取得极大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.根据如图所示的伪代码,则输出的S的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{{1+px+q{x^2}}}$(其中p2+q2≠0),且存在无穷数列{an},使得函数在其定义域内还可以表示为f(x)=1+a1x+a2x2+…+anxn+….
(1)求a2(用p,q表示);
(2)当p=-1,q=-1时,令bn=$\frac{{{a_{n+1}}}}{{{a_n}{a_{n+2}}}}$,设数列{bn}的前n项和为Sn,求证:Sn<$\frac{3}{2}$;
(3)若数列{an}是公差不为零的等差数列,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2co{s}^{2}α}\\{y=sin2α}\end{array}\right.$(α是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=$\frac{1}{sinθ-cosθ}$.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)求曲线C1上的任意一点P到曲线C2的最小距离,并求出此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C-FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图:$\widehat{BCD}$是直径为$2\sqrt{2}$的半圆,O为圆心,C是$\widehat{BD}$上一点,且$\widehat{BC}=2\widehat{CD}$.DF⊥CD,且DF=2,$BF=2\sqrt{3}$,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.
(Ⅰ)求证:面BCE⊥面CDF;
(Ⅱ)求证:QR∥平面BCD;
(Ⅲ)求三棱锥F-BCE的体积.

查看答案和解析>>

同步练习册答案