分析 由条件利用同角三角函数的基本关系求得sin(α+β)和sinα的值,再利用两角差的余弦公式,求得cosβ=cos[(α+β)-α]的值.
解答 解:由0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,可得0<α+β<π.
∵cos(α+β)=-$\frac{47}{51}$,∴sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{14\sqrt{2}}{51}$.
∵cosα=$\frac{1}{17}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{12\sqrt{2}}{17}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{47}{51}$•$\frac{1}{17}$+$\frac{14\sqrt{2}}{51}$•$\frac{12\sqrt{2}}{17}$=$\frac{1}{3}$,
故答案为:$\frac{1}{3}$.
点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(e-1)π}{2}$ | B. | $\frac{(e-1){π}}{3}$ | C. | $\frac{(e-1)π}{4}$ | D. | $\frac{(e-1)π}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{\sqrt{3}}{2}$,1] | B. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,1] | C. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$] | D. | [$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com