精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足an+1=an+2n,n=1,2,3,…,且bn=$\frac{1}{{a}_{n}}$,a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和为Tn,证明:对任意n∈N*,都有1≤Tn<2成立.

分析 (I)由an+1=an+2n,可得an+1-an=2n,利用“累加求和”、等比数列的前n项和公式即可得出;
(II)${b}_{n}=\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}-1}$,由于bn>0,可得Tn≥T1=1.当n≥2时,bn=$\frac{1}{{2}^{n}-1}$<$\frac{1}{{2}^{n-1}}$.再利用等比数列的前n项和公式即可证明.

解答 (I)解:∵an+1=an+2n,∴an+1-an=2n
∴当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+1
=$\frac{{2}^{n}-1}{2-1}$=2n-1.
当n=1时也成立,∴an=2n-1.
(II)证明:${b}_{n}=\frac{1}{{a}_{n}}$=$\frac{1}{{2}^{n}-1}$,
∵bn>0,∴Tn≥T1=1.
当n≥2时,bn=$\frac{1}{{2}^{n}-1}$<$\frac{1}{{2}^{n-1}}$.
∴Tn$<1+\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=$2(1-\frac{1}{{2}^{n}})$<2.
综上可得:对任意n∈N*,都有1≤Tn<2成立.

点评 本题考查了“累加求和”、等比数列的前n项和公式、“放缩法”、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知点P(0,-1),Q(0,1),若直线 l:y=mx-2 上至少存在三个点 M,使得△PQM 为直角三角形,则实数 m 的取值范围是m≤-$\sqrt{3}$或m≥$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正方体ABCD-A1B1C1D1中.
①经过点A垂直于平面A1BD的直线也垂直于平面B1D1C;
②设O为AC和BD的交点,则异面直线AB1与OC1所成的角是$\frac{π}{6}$;
③若正方体的棱长为2,则经过棱D1C1,B1C1,BB1中点的正方体的截面面积为3$\sqrt{3}$;
④若点P是正方形ABCD内(包括边界)的动点,点Q在对角线A1C上,且满足PQ⊥A1C,PA=PQ,则点P的轨迹是线段.
以上命题正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解方程:log12($\sqrt{x}+\root{4}{x}$)=$\frac{1}{2}$log9x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b∈R,a≠0,曲线y=$\frac{a+2}{x}$,y=ax+2b+1,若两条曲线在区间[3,4]上至少有一个公共点,则a2+b2的最小值=$\frac{1}{100}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xoy中,区域D由不等式组$\left\{\begin{array}{l}{0≤x≤\sqrt{2}}\\{y≤2}\\{x≤\sqrt{2}y}\end{array}\right.$给定,点M(x,y)为D上的动点,则z=2x-y的最大值为4$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=2ax2-2bx-a+b(a,b∈R,a>0),g(x)=2ax-2b
(1)若$θ∈[{0,\frac{π}{2}}]$时,求f(sinθ)的最大值;
(2)设a>0时,若对任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值为2,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+1,(x∈R)在x=3取得极小值
(1)求函数f(x)的极小值是-5,求f(x);
(2)若a=-4时,函数f(x)存在极大值,求b的取值范围及f(x)取得极大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)
(Ⅰ)求四棱锥C-FDEO的体积
(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案