精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系xoy中,区域D由不等式组$\left\{\begin{array}{l}{0≤x≤\sqrt{2}}\\{y≤2}\\{x≤\sqrt{2}y}\end{array}\right.$给定,点M(x,y)为D上的动点,则z=2x-y的最大值为4$\sqrt{2}$-2.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点C时,直线y=2x-z的截距最小,
此时z最大.
由$\left\{\begin{array}{l}{y=2}\\{x=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2\sqrt{2}}\\{y=2}\end{array}\right.$,即C(2$\sqrt{2}$,2)
将C的坐标代入目标函数z=2x-y,
得z=4$\sqrt{2}$-2.即z=2x-y的最大值为4$\sqrt{2}$-2.
故答案为:4$\sqrt{2}$-2.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数 f(x)=ax-lnx,g(x)=eax+2x,其中 a∈R.
(Ⅰ)当 a=2 时,求函数 f(x) 的极值;
(Ⅱ)若存在区间 D⊆(0,+∞),使得 f(x)与g(x)在区间D上具有相同的单调性,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=|x-1|-|x+3|.
(1)解不等式f(x)≤2;
(2)若f(x)-a≥0恒成立,求a的取值范围.
(3)若f(x)-a≥0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义在R上的奇函数f(x)满足f(x)-f(-x)=2ex-2e-x-4x,且g(x)=f(2x)-4mf(x).
(1)证明:函数f(x)在点(x0,f(x0))处的切线的斜率为非负实数;
(2)若x>0时,g(x)>0,求m的最大值;
(3)估计ln2的近似值(精确到0.001).(注:1.4142<$\sqrt{2}$<1.4143)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足an+1=an+2n,n=1,2,3,…,且bn=$\frac{1}{{a}_{n}}$,a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的前n项和为Tn,证明:对任意n∈N*,都有1≤Tn<2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}{,_{\;}}_{\;}BC=A{A_1}$=1,点P为对角线AC1上的动点,点Q为底面ABCD上的动点(点P,Q可以重合),则B1P+PQ的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.以坐标原点O为顶点,x轴的正半轴为始边,角α,β,θ的终边分别为OA,OB,OC,OC为∠AOB的角平分线,若$tanθ=\frac{1}{3}$,则tan(α+β)=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合A={x|x2-1=0},集合B=[0,2],则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若i为虚数单位,则复数$\frac{i}{{\sqrt{3}-i}}$等于(  )
A.$-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$B.$\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$C.$-\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$D.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

同步练习册答案