分析 (Ⅰ)由余弦的和差公式,化简得到f(x),再代入,根据角的范围,即可求出g(α)的值,
(Ⅱ)化简f(x)+g(x)=2cos(2x+$\frac{π}{3}$),根据余弦函数的单调性即可求出最值.
解答 解:(Ⅰ)由$f(x)=cos(2x+\frac{π}{3})+cos(2x+\frac{2}{3}π)$
得f(x)=$\frac{1}{2}cos2x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x-\frac{{\sqrt{3}}}{2}sin2x$=$-\sqrt{3}sin2x$.
因为$f(α)=-\frac{3}{5}\sqrt{3}$,即$-\sqrt{3}sin2α=-\frac{3}{5}\sqrt{3}$,
所以$sin2α=\frac{3}{5}$.
又因为$α∈(\frac{π}{4},\frac{π}{2})$,
所以$2α∈(\frac{π}{2},π)$.
故$cos2α=-\frac{4}{5}$,
即$g(α)=-\frac{4}{5}$.
(Ⅱ)f(x)+g(x)=$-\sqrt{3}sin2x+cos2x$=$2cos(2x+\frac{π}{3})$.
因为x$∈[-\frac{π}{6},\frac{π}{3}]$,
所以$2x+\frac{π}{3}∈[0,π]$.
所以当$2x+\frac{π}{3}=0$,
即$x=-\frac{π}{6}$时,f(x)+g(x)有最大值,最大值为2.
点评 本题考查了余弦函数的图象和性质,以及三角形函数的和差公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 1-2100 | D. | 2100-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32种 | B. | 40种 | C. | 48种 | D. | 56种 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com