精英家教网 > 高中数学 > 题目详情
已知椭圆C:的离心率为,右焦点到直线 的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).
(I) .(II)

试题分析:(I)由题意得,所以,所求椭圆方程为.
(II)设,把直线代入椭圆方程得到
,因此
所以中点,又在直线上,得
, 故
所以,原点的距离为
得到,当且仅当取到等号,检验成立.
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用弦长公式,确定得到三角形面积表达式,应用均值定理求得最大值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线,过右焦点作双曲线的其中一条渐近线的垂线,垂足为,交另一条渐近线于点,若(其中为坐标原点),则双曲线的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线p>0)的准线与圆相切,则p的值为(    )
A.10B.6 C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线)的一条渐近线被圆截得的弦长为,则双曲线的离心率为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为,且两条曲线在第一象限的交点为是以为底边的等腰三角形,若,椭圆与双曲线的离心率分别为,则的取值范围是(   )
A.(1,B.()  C.(D.(,+

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系和极坐标系的原点与极点重合,轴的正半轴与极轴重合,单位长度相同。已知曲线的极坐标方程为,曲线的参数方程为,射线与曲线交于极点以外的三点A,B,C.
(1)求证:
(2)当时,B,C两点在曲线上,求的值。

查看答案和解析>>

同步练习册答案