精英家教网 > 高中数学 > 题目详情
已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)
(1)    (2)

试题分析:解:(1)设由已知得 
     P点的轨迹为一椭圆除去长轴的两端点
(2)设M
 消去得:


OM⊥ON    ∴


满足
O点到的距离为 
      
点评:主要是考查了椭圆方程以及直线与椭圆位置关系的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,
(1)求抛物线的方程;
(2)设点是抛物线上的两点,的角平分线与轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线过点,求弦的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线与抛物线交于两点,则线段的中点坐标是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆轴负半轴交于点为椭圆第一象限上的点,直线交椭圆于另一点,椭圆左焦点为,连接于点D。
(1)如果,求椭圆的离心率; 
(2)在(1)的条件下,若直线的倾斜角为且△ABC的面积为,求椭圆的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面斜坐标系,点的斜坐标定义为:“若 (其中分别为与斜坐标系的轴,轴同方向的单位向量),则点的坐标为”.若且动点满足,则点在斜坐标系中的轨迹方程为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,右焦点到直线 的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线的焦点与双曲线的右焦点重合,则双曲线的离心率为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的渐近线与圆有公共点,则该双曲线的离心率的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为中心,为两个焦点的椭圆上存在一点,满足,则该椭圆的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案