精英家教网 > 高中数学 > 题目详情
5.若抛物线C:y2=2px的焦点在直线l:2x+y-2=0上.
(1)求抛物线C的方程;
(2)求直线l被抛物线C所截的弦长.

分析 (1)求出抛物线的焦点坐标,代入即可求得p=2,进而得到抛物线的方程;
(2)联立直线和抛物线方程,运用韦达定理,结合抛物线的定义,即可求得弦长.

解答 解:(1)抛物线C:y2=2px的焦点为($\frac{p}{2}$,0),
由题意可得,p-2=0,解得p=2,
即有抛物线方程为y2=4x;
(2)由直线2x+y-2=0和抛物线y2=4x,
消去y,可得x2-3x+1=0,
设A(x1,y1),B(x2,y2),
即有x1+x2=3,
由抛物线的定义可得|AB|=x1+x2+p=3+2=5.
则直线l被抛物线C所截的弦长为5.

点评 本题考查抛物线的定义、方程和性质,主要考查定义法的运用,同时考查直线方程和抛物线方程联立,运用韦达定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知圆心在第一象限的圆C经过点($\frac{1}{2}$,0)且与直线x=-$\frac{1}{2}$相切,又圆C在x轴和y轴上截得的弦长相等,则圆心C的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中,已知三点A(m,n),B(n,t),C(t,m),直线AC的斜率与倾斜角为钝角的直线AB的斜率之和为$\frac{5}{3}$,而直线AB恰好经过抛物线x2=2p(y-q)的焦点F(0,$\frac{p}{2}$+q),并且与抛物线交于P、Q两点(P在Y轴左侧).则$\frac{{|{PF}|}}{{|{QF}|}}$=(  )
A.9B.4C.$\frac{{\sqrt{173}}}{2}$D.$\frac{21}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点M(2,4)作直线l,与抛物线y2=8x只有一个公共点,满足条件的直线有(  )条.
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知等差数列{an}的首项a1=1,公差d=-$\frac{1}{2}$,若直线x+y-3an=0和直线2x-y+2an-1=0的交点M在第四象限,则an=$-\frac{1}{2}n+\frac{3}{2}(n=3,4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=2px(p>0)上一点A(3,m)(m>0),若A到焦点F的距离为4,则以A为圆心与抛物线C的准线相切的圆的标准方程为(x-3)2+(y-2$\sqrt{3}$)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一块形状为等腰直角三角形的薄板,腰AC的长为a米(a为常数),现在斜边AB选一点D,将△ACD沿CD折起.翻扣在地面上,做成一个遮阳棚,如图(2),设△BCD的面积为S,点A到直线CD的距离为d,实践证明,遮阳效果y与S,d的乘积Sd成正比,比例系数为k,(k为常数,且k>0)
(1)设∠ACD=θ,试将S表示为θ的函数
(2)当点D在何处时,遮阳效果最佳(即y取得最大值)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有同学说,定积分${∫}_{a}^{b}$f(x)dx的值也可以这样计算:
(1)分割:在[a,b]上插入n-1个点,a=x0<x1<x2<…<xi-1<xi<…<xn=b,将[a,b]割成n个小区间:[x0,x1],[x1,x2],…[xi-1,xi],…[xn-1,xn],记第i个区间的长度为△xi,△xi=xi-xi-1(i=)1,2,…,n),记n个区间长度中最长的为T,即T=max{△x1,△x2,…,△xn};
(2)近似代、求和.设ξ∈[xi-1,xi],则${∫}_{a}^{b}$f(x)dx≈$\sum_{i=1}^{n}$f(ξ)△xi
(3)取极限:当T无限减小趋向于零时,则$\sum_{i=1}^{n}$f(ξ)△xi无限趋向于${∫}_{a}^{b}$f(x)dx,即${∫}_{a}^{b}$f(x)dx=$\underset{lim}{x→∞=1}$$\sum_{i=1}^{n}$f(ξ)△xi
这样就算正确吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\frac{{sin}^{2}θ+4}{cosθ+1}$=2,那么(cosθ+3)(sinθ+1)的值是4.

查看答案和解析>>

同步练习册答案