分析 (1)若函数f(x)=x2+mx+1只有一个零点,则$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{f(1)>0}\\{f(2)≤0}\end{array}\right.$或△=m2-4=0,且0<-$\frac{m}{2}$<2,解得即可,
(2))若f(x)在区间(0,2)上有两个零点,则$\left\{\begin{array}{l}{0<-\frac{m}{2}<2}\\{f(0)>0}\\{f(2)>0}\\{△={m}^{2}-4>0}\end{array}\right.$,解得即可,
(3)由(1),(2)可知.
解答 解:(1):若函数f(x)=x2+mx+1只有一个零点,
∴$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{f(1)>0}\\{f(2)≤0}\end{array}\right.$或△=m2-4=0,且0<-$\frac{m}{2}$<2,
解得m=-2或m≤-$\frac{5}{2}$,
(2)∵f(x)在区间(0,2)上有两个零点,
∴$\left\{\begin{array}{l}{0<-\frac{m}{2}<2}\\{f(0)>0}\\{f(2)>0}\\{△={m}^{2}-4>0}\end{array}\right.$,
解得-$\frac{5}{2}$<m<-2,
故m的取值范围为(-$\frac{5}{2}$,-2),
(3)f(x)在区间(0,2)上有零点,由(1),(2)可知,
m的取值范围为(-∞,-2]
点评 本题考查的知识点是二次函数的图象图象和性质,熟练掌握二次函数的图象和性质,是解答的关键
科目:高中数学 来源: 题型:选择题
| A. | (12,30] | B. | (-∞,18] | C. | [18,+∞) | D. | (-12,18] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{3}$ | B. | $\frac{11}{3}$ | C. | $\frac{7}{2}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com