精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,a1+a2+a3=15,数列{bn}是等比数列,b1b2b3=27,且a1=b2,a4=b3
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=2an+bn,求数列{cn}的前n项和.
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(1)由已知可求a2,b2,结合已知a1=b2,可得等差数列{an}的公差d,可求an=,然后由b3=a4,可求{bn}的公比q,进而可求bn
(2)cn=2an+bn=4n+2+3n-1,利用等差数列与等比数列的求和公式,即可得出结论.
解答: 解:(1)由a1+a2+a3=15,b1b2b3=27.
可得a2=5,b2=3,
所以a1=b2=3,从而等差数列{an}的公差d=2,
所以an=2n+1,从而b3=a4=9,{bn}的公比q=3
所以bn=3n-1
(2)cn=2an+bn=4n+2+3n-1
∴数列{cn}的前n项和为4•
n(n+1)
2
+2n+
3(1-3n)
1-3
=2n2+4n+
3
2
•3n-
3
2
点评:本题主要考查了等差数列、等比数列的性质及通项公式的应用,考查等差数列与等比数列的求和公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

各项均为正数的数列{an}中,a1=1,Sn是数列{an}的前n项和,对任意n∈N*,有2Sn=2an2+an-1.
(1)求数列{an}的通项公式;
(2)记bn=
4Sn
n+3
•2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx,且f(1)=3,f(2)=12,
(1)求函数f(x)的解析式;
(2)求f(0),f(3)的值;
(3)判断函数f(x)的奇偶性,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:x2=4y.
(1)若直线y=x+1与抛物线E相交于P,Q两点,求|PQ|弦长;
(2)已知△ABC的三个顶点在抛物线E上运动.若点A在坐标原点,BC边过定点N(0,2),点M在BC上且
AM
BC
=0,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把函数y=f(x)(x∈D)叫做闭函数.
(1)求闭函数y=x 
1
3
符合条件②的区间[a,b];
(2)若y=2+
x-k
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2,当x=1时,函数有极大值3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a+b+c=1,
(1)求S=2a2+3b2+c2的最小值及取最小值时a,b,c的值.
(2)若2a2+3b2+c2=1,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx-4,若x=-
1
3
与x=-1是f(x)的极值点.
(1)求a、b及函数f(x)的极值;
(2)设g(x)=kx2+x-8(k∈R),试讨论函数F(x)=f(x)-g(x)在区间[0,+∞)上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

将正奇数排成如下图所示的三角形数阵(第k行有k个奇数),其中第i行第j个数表示为aij(i,j∈N*).例如a42=15,若aij=2013,则i-j=
 

查看答案和解析>>

同步练习册答案