精英家教网 > 高中数学 > 题目详情
已知a+b+c=1,
(1)求S=2a2+3b2+c2的最小值及取最小值时a,b,c的值.
(2)若2a2+3b2+c2=1,求c的取值范围.
考点:柯西不等式
专题:选作题,不等式
分析:对于“积和结构”或“平方和结构”,通常构造利用柯西不等式求解即可.(1)根据柯西不等式,(2a2+3b2+c2)(
1
2
+
1
3
+1)≥(a+b+c)2;(2)根据柯西不等式得:(a+b)2≤(2a2+3b2)(
1
2
+
1
3
),即可得出结论.
解答: 解:(1)根据柯西不等式,(2a2+3b2+c2)(
1
2
+
1
3
+1)≥(a+b+c)2
∵a+b+c=1,∴S≥
6
11
,等号成立的条件是a=
3
11
,b=
2
11
,c=
6
11

∴当a=
3
11
,b=
2
11
,c=
6
11
时,S=2a2+3b2+c2的最小值为
6
11

(2)根据条件可得:a+b=1-c,2a2+3b2=1-c2
根据柯西不等式得:(a+b)2≤(2a2+3b2)(
1
2
+
1
3
),
∴(1-c)2
5
6
(1-c2),解之得
1
11
≤c≤1.
点评:柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)为f(x)的导函数),则称这类函数为A类函数.
(1)若函数g(x)=x2-1,试判断g(x)是否为A类函数;
(2)若函数h(x)=ax-3-lnx-
1-a
x
是A类函数,求实数a的取值范围;
(3)若函数f(x)是A类函数,当x1>0,x2>0时,证明f(x1)+f(x2)<f(x1)+f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项的和为Sn=n(n+1)
(1)求证:数列{an}为等差数列;
(2)求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a1+a2+a3=15,数列{bn}是等比数列,b1b2b3=27,且a1=b2,a4=b3
(1)求数列{an}和{bn}的通项公式;
(2)数列{cn}满足cn=2an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
的模分别为3和2,是否存在实数x,使得(
a
-x
b
)⊥
a
,若存在,求出x的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:我们把椭圆的焦距与长轴的长度之比即e=
c
a
,叫做椭圆的离心率.若两个椭圆的离心率e相同,称这两个椭圆相似.
(1)判断椭圆C1
x2
100
+
y2
25
=1与椭圆C2
x2
4
+y2=1是否相似?并说明理由;
(2)若椭圆Γ1
x2
a2
+
y2
4
=1(a>2)与椭圆Γ2
x2
8
+
y2
16
=1相似,求a的值;
(3)设动直线l:y=kx+6与(2)中的椭圆Γ1交于M、N两点,试探究:在椭圆Γ1上是否存在异于M、N的定点Q,使得直线QM、QN的斜率之积为定值?若存在,求出定点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有三个正数依次成等差数列其中他们的和为12,且三个数的平方和为56,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x2+ax+b<0的解集为(-1,2),则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a2+a8+a14=6,则S15=
 

查看答案和解析>>

同步练习册答案