精英家教网 > 高中数学 > 题目详情
设全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求实数m的取值范围,使其分别满足下列两个条件:①C?(A∩B);②C?(∁UA)∩(∁UB).
考点:集合关系中的参数取值问题
专题:集合
分析:根据已知条件求出A∩B={x|1<x<4},C={x|x<m},根据条件①求出m的取值范围;再求出∁UA∩∁UB,根据条件②便能求得m的取值范围,这两个m的取值范围求交集即可.
解答: 解:∵A={x|-5<x<4},B={x|x<-6或x>1}
∴A∩B={x|1<x<4}.
又∁UA={x|x≤-5或x≥4},∁UB={x|-6≤x≤1},
∴(∁UA)∩(∁UB)={x|-6≤x≤-5}.
C={x|x<m},∴C?(A∩B)时,m≥4;
C?(∁UA)∩(∁UB)时,m>-5,∴m≥4.
实数m的取值范围是[4,+∞).
点评:本题考查集合的求交和求补的运算,和子集的概念,能理解子集的概念和集合的数轴表示是求解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,则圆O的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上中点,F是AB中点,AC=1,BC=2,AA1=4.
(1)求证:CF∥平面AEB1
(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+
3
cos2x-m,若f(x)的最大值为1.
(1)求m的值,并求f(x)的单调增区间;
(2)在△ABC中,角A、B、C所对的边是a、b、c,若f(B)=
3
-1,且
3
a=b+c,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=3
e1
-2
e2
b
=4
e1
+
e2
,其中
e1
=(1,0),
e2
=(0,1),求:
(1)求
a
b
的值;  
(2)求
a
b
夹角θ的余弦值.  
(3)求
a
b
方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x,g(x)=-x2+2x+b,(b∈R),h(x)=f(x)-
1
f(x)

(1)判断h(x)的奇偶性并证明.
(2)对任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的对称轴方程为:x=1,设向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=( cos2x,1),
d
=(2,1).
(1)分别求
a
b
c
d
的取值范围;
(2)当x∈[0,π]时,求不等式f(
a
b
)>f(
c
d
)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

求所有实多项式f和g,使得对所有x∈R,有:(x2+x+1)f(x2-x+1)=(x2-x+1)g(x2+x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
x2
3+k
+
y2
2-k
=1表示椭圆,则实数k的取值范围
 

查看答案和解析>>

同步练习册答案