精英家教网 > 高中数学 > 题目详情

设函数f(x)=ln(ex+1)(x∈R)可以表示成一个奇函数g(x)和一个偶函数h(x)之和,则h(x)的最小值是________.

ln2
分析:由题意可知,f(x)=g(x)+h(x),然后以-x代入x,再利用奇偶性进行化简建立方程组,可求h(x),然后利用对数的运算性质及基本不等式可求最小值
解答:由题意可知,f(x)=g(x)+h(x)=ln(ex+1)①
∴g(-x)+h(-x)=ln(e-x+1)
即-g(x)+h(x)=ln(e-x+1)②
①②联立可得,h(x)=[ln(ex+1)+ln(e-x+1]
=
=
故答案为:ln2
点评:本题主要考查了函数奇偶性的应用,以及对数函数的有关性质、基本不等式求解最值等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案