精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.

M分别为CE、AB的中点.

(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)
如图,PA⊥平面ABC,平面PAB⊥平面PBC  求证:AB⊥BC   
                                                                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
在如图的多面体中,⊥平面,
中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
已知平行六面体中
各条棱长均为,底面是正方形,且

(1)用表示及求
(2)求异面直线所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形中,
椭圆为焦点且过点

(1)建立适当的直角坐标系,求椭圆的方程;
(2)若点E满足是否存在斜率的直线与椭圆交于两点,且,若存在,求的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知菱形ABCD的边长为2,,S为平面ABCD外一点,为正三角形,,M、N分别为SB、SC的中点。

(Ⅰ)求证:平面平面ABCD;
(Ⅱ)求二面角A—SB—C的余弦值;
(Ⅲ)求四棱锥M—ABN的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知异面直线a与b所成的角为500,P为空间一点,则过点P与a、b所成的角都是300的直线有且仅有(    )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

EF是异面直线ab的公垂线,直线lEF,则lab交点的个数为  (   )
A、0    B、1     C、0或1    D、0,1或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b是异面直线,a与b所成角60°.二面角的大小为.如果,那么(   )
A.60°B.12C.60°或120°D.不能确定

查看答案和解析>>

同步练习册答案