精英家教网 > 高中数学 > 题目详情
5.在直角坐标系xOy中,曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),点P是曲线C1与x轴正半轴的交点.在以O为极点,x轴正半轴为极轴的极坐标系轴,曲线C2:ρcosθ+ρsinθ+3=0.
(1)求曲线C1的极坐标方程和过点P的曲线C1的切线极坐标方程;
(2)在曲线C1上求一点Q(a,b),它到曲线C2的距离最长.

分析 (1)曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数)消去参数θ可得普通方程,再利用极坐标与直角坐标互化公式可得极坐标方程.对于普通方程,令y=0,可得曲线C1与x轴正半轴的交点P(2,0),则过P点的圆的切线方程为x=2,即可化为极坐标方程.
(2)曲线C2:ρcosθ+ρsinθ+3=0,化为直角坐标方程:x+y+3=0.经过圆心与直线x+y+3=0垂直的直线为:y=x-1.与圆的方程联立即可得出点Q的坐标.

解答 解:(1)曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数)消去参数θ可得普通方程:(x-1)2+y2=1.
展开化为x2+y2-2x=0,可得极坐标方程:ρ2-2ρcosθ=0,即ρ=2cosθ.
曲线C1与x轴正半轴的交点P(2,0),
则过P点的圆的切线方程为x=2,可得极坐标方程:ρcosθ=2.
(2)曲线C2:ρcosθ+ρsinθ+3=0,化为直角坐标方程:x+y+3=0.
圆心C1(1,0)到直线的距离d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$.
经过圆心与直线x+y+3=0垂直的直线为:y=x-1.
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2x=0}\\{x-y-1=0}\end{array}\right.$,化为2x2-4x+1=0,解得x=$\frac{2±\sqrt{2}}{2}$.
取x=$\frac{2+\sqrt{2}}{2}$,解得y=$\frac{\sqrt{2}}{2}$.
∴Q点取$(\frac{2+\sqrt{2}}{2},\frac{\sqrt{2}}{2})$时,它到曲线C2的距离最长,为2$\sqrt{2}$+1..

点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、曲线的交点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2sin2($\frac{π}{4}$+x)+$\sqrt{3}$cos2x+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)-m=2在x∈[0,$\frac{π}{2}$]上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量|$\overrightarrow{a}$|=2,其中$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为-1,且($\overrightarrow{a}$-2$\overrightarrow{b}$)($\overrightarrow{a}$+2$\overrightarrow{b}$)=0
(1)试求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ及|$\overrightarrow{b}$|;
(2)若向量$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,试求|$\overrightarrow{c}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=-3t}\\{y=m+\sqrt{3}t}\end{array}\right.$(t是参数,m是常数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C极坐标方程为ρ=asin(θ+$\frac{π}{3}$),点M的极坐标为(4,$\frac{π}{6}$),且点M在曲线C上.
(I)求a的值及曲线C直角坐标方程;
(II )若点M关于直线l的对称点N在曲线C上,求|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,平面ABC⊥平面α,D为线段AB的中点,$|{AB}|=2\sqrt{2}$,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为$\sqrt{2}$,则∠APB的最大值为90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.观察下列等式

据此规律,第n个等式可为1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n}$=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式|2x-m|≤x+1的解集为[1,5].
(Ⅰ)求m的值;
(Ⅱ)若实数a,b满足a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x∈R,向量$\overrightarrow{OA}$=(acos2x,1),$\overrightarrow{OB}$=(2,$\sqrt{3}$asin 2x-a),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,a≠0.
(1)求函数f(x)的解析式,并求当a>0时,f(x)的单调增区间;
(2)(文科做)当a=1,x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.
(理科做)当x∈[0,$\frac{π}{2}$]时,f(x)的最大值为5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式|2-x|<5的解集是(  )
A.{x|x>7或x<-3}B.{x|-3<x<7}C.{x|-7<x<3}D.{x|x>-3}

查看答案和解析>>

同步练习册答案