精英家教网 > 高中数学 > 题目详情
17.已知关于x的不等式|2x-m|≤x+1的解集为[1,5].
(Ⅰ)求m的值;
(Ⅱ)若实数a,b满足a+b=m,求a2+b2的最小值.

分析 (Ⅰ)去掉绝对值符号,利用条件求m的值;
(Ⅱ)若实数a,b满足a+b=m,利用基本不等式求a2+b2的最小值.

解答 解:(Ⅰ)∵|2x-m|≤x+1
∴-x-1≤2x-m≤x+1,
∴$\frac{1}{3}$(m-1)≤x≤m+1,
∵不等式|2x-m|≤x+1的解集为[1,5].
∴$\left\{{\begin{array}{l}{m-1=3}\\{m+1=5}\end{array}⇒m=4}\right.$,
(Ⅱ)${a^2}+{b^2}≥\frac{{{{(a+b)}^2}}}{2}≥\frac{16}{2}$=8
当且仅当a=b时,取等号,
∴a2+b2的最小值为8.

点评 本题考查绝对值不等式的解法,考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x-2|-3,g(x)=|x+3|
(1)解不等式f(x)<g(x);
(2)若不等式f(x)<g(x)+a对任意x∈R恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ACED和四边形CBFE都是矩形,且二面角A-CE-B是直二面角,AM垂直CD交CE于M.
(1)求证:AM⊥BD;
(2)若AD=$\sqrt{6}$,BC=1,AC=$\sqrt{3}$,求二面角M-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),点P是曲线C1与x轴正半轴的交点.在以O为极点,x轴正半轴为极轴的极坐标系轴,曲线C2:ρcosθ+ρsinθ+3=0.
(1)求曲线C1的极坐标方程和过点P的曲线C1的切线极坐标方程;
(2)在曲线C1上求一点Q(a,b),它到曲线C2的距离最长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设点P的直角坐标为(-3,3),以原点为极点,实轴正半轴为极轴建立极坐标系(0≤θ<2π),则点P的极坐标为(  )
A.$(3\sqrt{2},\frac{3π}{4})$B.$(-3\sqrt{2},\frac{5π}{4})$C.$(3,\frac{5π}{4})$D.$(-3,\frac{3π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,ABC-A1B1C1是底面边长为2,高为$\frac{{\sqrt{3}}}{2}$的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).
(Ⅰ)证明:PQ∥A1B1
(Ⅱ)当$λ=\frac{1}{2}$时,求点C到平面APQB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将正偶数排列如表,其中第i行第j个数表示aij(i∈N*,j∈N*),例如a32=10,若aij=2012,则i+j=(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线C1:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(t为参数),圆C2:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(α为参数)
(Ⅰ)若直线C1经过点(2,3),求直线C1的普通方程;若圆C2经过点(2,2),求圆C2的普通方程;
(Ⅱ)点P是圆C2上一个动点,若|OP|的最大值为4,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{3}{4}$x2tan2α+$\sqrt{10}$xcos(α+$\frac{π}{4}$),其中tanα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}}$)
(I)求f(x)的解析式;
(Ⅱ)若数列{an}满足a1=$\frac{2}{3}$,an+1=f(an),n∈N*.求证:1<$\frac{1}{{1+{a_1}}}$+$\frac{1}{{1+{a_2}}}$+…+$\frac{1}{{1+{a_n}}}$<$\frac{3}{2}$(n∈N*,n≥2)

查看答案和解析>>

同步练习册答案