精英家教网 > 高中数学 > 题目详情
下列条件能推出平面平面的是(    )
A.存在一条直线
B.存在一条直线
C.存在两条平行直线
D.存在两条异面直线
D
解:因为根据面面平行的判定定理可知,如果存在两条异面直线,则可以利用线线平行得到面面平行,选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,分别是正三棱柱的棱的中点,且棱.

(Ⅰ)求证:平面
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示,已知M、N分别是AC、AD的中点,BCCD.

(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求证:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知棱柱的底面是菱形,且面为棱的中点,为线段的中点,
(1)求证:

(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图5,正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,下列结论正确的是( )
A.A1C1∥ADB.C1D1⊥AB
C.AC1与CD成45°角 D.A1C1与B1C成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.

(Ⅰ)求证:直线BD⊥平面PAC
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)已知M在线段PC上,且BM=DM=,CM=3,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,一个内角为的菱形沿较短对角线折成四面体,点
 分别为的中点,则下列命题中正确的是                   。
;②;③有最大值,无最小值;
④当四面体的体积最大时,; ⑤垂直于截面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥中,直线所成的角的大小为
A.B.C.D.

查看答案和解析>>

同步练习册答案