精英家教网 > 高中数学 > 题目详情
6.如图,已知斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面$ABC,∠ABC=90°,BC=2,AC=2\sqrt{3}$,且AA1⊥A1C,AA1=A1C,求侧面A1ABB1与底面ABC所成锐二面角的大小.

分析 过点A1作A1O⊥AC,由题意O为AC的中点,过点O作OD⊥AC交AB于D,由平面A1ACC1⊥平面ABC,得A1O⊥平面ABC,以O为原点,OD,OC,OA1分别为x,y,z轴,建立如图所示的直角坐标系.求出所用点的坐标,得到平面ABC与平面A1ABB1的一个法向量,利用两平面法向量所成角的余弦值求得答案.

解答 解:过点A1作A1O⊥AC,由题意O为AC的中点,过点O作OD⊥AC交AB于D,
∵平面A1ACC1⊥平面ABC,∴A1O⊥平面ABC,
以O为原点,OD,OC,OA1分别为x,y,z轴,建立如图所示的直角坐标系.
则$A(0,-\sqrt{3},0),B(\frac{{2\sqrt{6}}}{3},\frac{{\sqrt{3}}}{3},0),{A_1}(0,0,\sqrt{3})$,
$\overrightarrow{AB}=(\frac{{2\sqrt{6}}}{3},\frac{{4\sqrt{3}}}{3},0),\overrightarrow{A{A_1}}=(0,\sqrt{3},\sqrt{3})$,
由题意平面ABC的一个法向量为$\overrightarrow m=(0,0,\sqrt{3})$,
设平面A1ABB1的一个法向量为$\overrightarrow n=(x,y,z)$,
则由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=0}\\{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{\frac{2\sqrt{6}}{3}x+\frac{4\sqrt{3}}{3}y=0}\\{\sqrt{3}y+\sqrt{3}z=0}\end{array}\right.$,令z=1,则$x=\sqrt{2},y=-1,\overrightarrow n=(\sqrt{2},-1,1)$.
设平面A1ABB1与平面ABC所成锐二面角为θ,
则$cosθ=\frac{|\overrightarrow m•\overrightarrow n|}{|\overrightarrow m||\overrightarrow n|}=\frac{1}{2}$,∴θ=60°.
∴平面A1ABB1与平面ABC所成锐二面角为60°.

点评 本题考查二面角的平面角的求法,训练了利用空间向量求二面角的大小,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列命题中,正确的是(  )
A.若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,则$\overrightarrow a$=$\overrightarrow b$
B.若$\overrightarrow a$=$\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$是平行向量
C.若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,则$\overrightarrow a$>$\overrightarrow b$
D.若$\overrightarrow a$与$\overrightarrow b$不相等,则向量$\overrightarrow a$与$\overrightarrow b$是不共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若(x2+ax+1)6(a>0)的展开式中x2的系数是66,则实数a的值为(  )
A.4B.3C.2D.l

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在单位圆O的一条直径上随机取一点Q,则过点Q且与该直径垂直的弦长长度不超过1的概率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将根式$\root{5}{{{a^{-3}}}}$化为分数指数幂是(  )
A.a${\;}^{-\frac{3}{5}}$B.a${\;}^{\frac{5}{3}}$C.-a${\;}^{\frac{3}{5}}$D.-${a}^{\frac{5}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数$f(x)=\left\{{\begin{array}{l}{{2^{-|x|}},\;\;x<1}\\{|{{x^2}-2x}|,\;\;x≥1}\end{array}}\right.$,则不等式f(x)≤3的解集是(  )
A.(-∞,3]B.(-∞,3)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)对于任意的x1,x2∈R+恒有f(x1+x2)=f(x1)+f(x2)成立,且f(1)=$\frac{1}{4}$,则f(2015)=$\frac{2015}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为2,过右焦点和短轴一个端点的直线的倾斜角为$\frac{3π}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设斜率为k的直线l与椭圆C相交于A,B两点,记△AOB面积的最大值为Sk,证明:S1=S2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)(-2-i)(3-2i)                  
(2)$\frac{2+2i}{{{{(1+i)}^2}}}$.

查看答案和解析>>

同步练习册答案