精英家教网 > 高中数学 > 题目详情
16.下列命题中,正确的是(  )
A.若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,则$\overrightarrow a$=$\overrightarrow b$
B.若$\overrightarrow a$=$\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$是平行向量
C.若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,则$\overrightarrow a$>$\overrightarrow b$
D.若$\overrightarrow a$与$\overrightarrow b$不相等,则向量$\overrightarrow a$与$\overrightarrow b$是不共线向量

分析 利用向量的基本概念和性质,判断各个选项是否正确,从而得出结论.

解答 解:由于向量既有大小,又有方向,故A不正确;
若$\overrightarrow a$=$\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$是平行向量,故B正确;
若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,由于它们的方向不确定,故不能推出$\overrightarrow a$>$\overrightarrow b$,故C不正确;
若$\overrightarrow a$与$\overrightarrow b$不相等,但向量$\overrightarrow a$与$\overrightarrow b$的方向可能相同或相反,可能是共线向量,故D不正确,
故选:B.

点评 本题主要考查向量的基本概念和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=f(x)的图象过点(1,6),且当x=-1时,函数有最小值为2,求二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+(y-1)2=5,直线l过定点P(1,1).
(1)求圆心C到直线l距离最大时的直线l的方程;
(2)若l与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若l与圆C交与不同两点A、B,点P分弦AB为$\frac{AP}{PB}=\frac{1}{2}$,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x=2n-1,n∈N*},B={y|y=5m+1,m∈N*},则集合A∩B中最小元素为(  )
A.1B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn和通项an满足2Sn+an=1,等差数列{bn}中,b1=1,b2=2.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足cn=an•bn,求证:c${\;}_{1}+{c}_{2}+{c}_{3}+…+{c}_{n}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系,已知曲线C1:$\left\{\begin{array}{l}{x=3+cost}\\{y=2+sint}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(1)过C1,C2的方程为普通方程,并说明它们分别表示什么曲线?
(2)若C1上的点P对应的参数为t=π,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ-2sinθ)=7距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知某小学有90名三年级学生,将全体三年级学生随机按00~89编号,并且编号顺序平均分成9组,现要从中抽取9名学生,各组内抽取的编号按依次增加10进行系统抽样.
(1)若抽出的一个号码为30,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;
(2)分别统计这9名学生的数学成绩,获得成绩数据的茎叶图如图所示,从这9名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.桌面上有一些相距4cm的平行线,把一枚半径为1cm的硬币任意掷在这个桌面上,则硬币与任一条平行线都不相交的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面$ABC,∠ABC=90°,BC=2,AC=2\sqrt{3}$,且AA1⊥A1C,AA1=A1C,求侧面A1ABB1与底面ABC所成锐二面角的大小.

查看答案和解析>>

同步练习册答案