分析 (1)由定点P(1,1)在圆C:x2+(y-1)2=5的内部,结合圆的弦长、弦心距及半径的关系可得圆心C到直线1距离最大时的直线1的方程;
(2)设AB中点M(x,y),由题意$\overrightarrow{CM}•\overrightarrow{PM}=0$,化简可得AB中点M的轨迹方程;
(3)设A(x1,y1),B(x2,y2),由$\frac{AP}{PB}=\frac{1}{2}$得$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PB}$,化简得x2=3-2x1,由$\left\{{\begin{array}{l}{mx-y+1-m=0}\\{{x^2}+{{(y-1)}^2}=5}\end{array}}\right.$消去y得(1+m2)x2-2m2x+m2-5=0,利用韦达定理,即可得出结论.
解答 解:(1)∵点P(1,1)在圆C:x2+(y-1)2=5内
∴直线l与圆C相交,即直线l与圆C总有两个不同交点;
当CP⊥l时,圆心C到直线l距离最大,此时直线l的方程为x=1.…(4分)
(2)由题意$\overrightarrow{CM}•\overrightarrow{PM}=0$,
设M(x,y),则(x,y-1)•(x-1,y-1)=0,
化简得:x2+y2-x-2y+1=0,
故弦AB中点的轨迹方程是x2+y2-x-2y+1=0.…(8分)
(3)设A(x1,y1),B(x2,y2),由$\frac{AP}{PB}=\frac{1}{2}$得$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PB}$,
∴$1-{x_1}=\frac{1}{2}({x_2}-1)$,化简得x2=3-2x1…①
又由$\left\{{\begin{array}{l}{mx-y+1-m=0}\\{{x^2}+{{(y-1)}^2}=5}\end{array}}\right.$消去y得(1+m2)x2-2m2x+m2-5=0…(*)
∴${x_1}+{x_2}=\frac{{2{m^2}}}{{1+{m^2}}}$…②
由①②解得${x_1}=\frac{{3+{m^2}}}{{1+{m^2}}}$,代入(*)式解得±1,
∴直线l的方程为x-y=0或x+y-2=0.…(12分)
点评 本题主要考查直线和圆的位置关系的判定,直线过定点问题,求点的轨迹方程,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | 3个 | B. | 2个 | C. | 1个 | D. | 0个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96 | B. | 108 | C. | 204 | D. | 216 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$|{\overrightarrow a}|$=$|{\overrightarrow b}|$,则$\overrightarrow a$=$\overrightarrow b$ | |
| B. | 若$\overrightarrow a$=$\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$是平行向量 | |
| C. | 若$|{\overrightarrow a}|$>$|{\overrightarrow b}|$,则$\overrightarrow a$>$\overrightarrow b$ | |
| D. | 若$\overrightarrow a$与$\overrightarrow b$不相等,则向量$\overrightarrow a$与$\overrightarrow b$是不共线向量 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com