精英家教网 > 高中数学 > 题目详情
16.计算:
(1)(-2-i)(3-2i)                  
(2)$\frac{2+2i}{{{{(1+i)}^2}}}$.

分析 (1)(2)利用复数的运算法则、共轭复数的定义即可得出.

解答 解:(1)原式=-6-2+4i-3i=-8+i.
(2)原式=$\frac{2}{1+i}$=$\frac{2(1-i)}{(1+i)(1-i)}$=1-i.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,已知斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面$ABC,∠ABC=90°,BC=2,AC=2\sqrt{3}$,且AA1⊥A1C,AA1=A1C,求侧面A1ABB1与底面ABC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α终边上一点P(-$\sqrt{3}$,m),且sinα=$\frac{{\sqrt{2}m}}{4}$,则cosα=-$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系xOy中,设钝角α的终边与圆O:x2+y2=4交于点P(x1,y1),点P沿圆顺时针移动$\frac{2π}{3}$个单位弧长后到达点Q,点Q的坐标(x2,y2),则y1+y2的取值范围(  )
A.$[-\sqrt{3},\sqrt{3}]$B.$(\sqrt{3},2\sqrt{3}]$C.(1,2]D.$(\frac{{\sqrt{3}}}{2},\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则a+c=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域:
(1)f(x)=$\sqrt{2-x}$+$\frac{1}{x-1}$;
(2)y=$\frac{2}{1-\sqrt{1-x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.连续投掷两次骰子的点数为m,n,记向量$\overrightarrow b$=(m,n)与向量$\overrightarrow a$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}}$]的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若2∈{1,x2+x},则x的值为(  )
A.-2B.1C.1或-2D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l的极坐标方程为ρ(sinθ-3cosθ)=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$  (t为参数),l与C相交于A,B两点,求|AB|的值.

查看答案和解析>>

同步练习册答案