精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,设钝角α的终边与圆O:x2+y2=4交于点P(x1,y1),点P沿圆顺时针移动$\frac{2π}{3}$个单位弧长后到达点Q,点Q的坐标(x2,y2),则y1+y2的取值范围(  )
A.$[-\sqrt{3},\sqrt{3}]$B.$(\sqrt{3},2\sqrt{3}]$C.(1,2]D.$(\frac{{\sqrt{3}}}{2},\sqrt{3}]$

分析 根据三角函数的定义,即可求出函数y1+y2

解答 解:由三角函数定义知,x1=2cosα,y1=2sinα,$\frac{π}{2}$<α<π,
x2=2cos(α-$\frac{2π}{3}$),y2=2sin(α-$\frac{2π}{3}$),
则y1+y2=2sinα+2sin(α-$\frac{2π}{3}$)=2sinα+2(sinαcos$\frac{2π}{3}$-cosαsin$\frac{2π}{3}$)
=2sinα-sinα-$\sqrt{3}$cosα
=sinα-$\sqrt{3}$cosα
=2($\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα)
=2sin(α-$\frac{π}{3}$),
∵$\frac{π}{2}$<α<π,
∴$\frac{π}{6}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,
∴$\frac{1}{2}$<sin(α-$\frac{π}{3}$)≤1,
∴1<2sin(α-$\frac{π}{3}$)≤2,
即y1+y2的取值范围是(1,2],
故选C.

点评 本题主要考查三角函数的定义,两角和与差的余弦公式,余弦函数的性质,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在单位圆O的一条直径上随机取一点Q,则过点Q且与该直径垂直的弦长长度不超过1的概率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.$1-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为2,过右焦点和短轴一个端点的直线的倾斜角为$\frac{3π}{4}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设斜率为k的直线l与椭圆C相交于A,B两点,记△AOB面积的最大值为Sk,证明:S1=S2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex-ax-a(a∈R,e=2.71828…).
(Ⅰ)当a=e时,求函数f(x)的极值;
(Ⅱ)当a=1时,求证:对任意的正整数n,都有$\frac{2}{2+1}$×$\frac{{2}^{2}}{{2}^{2}+1}$×…×$\frac{{2}^{n}}{{2}^{n}+1}$>$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以T=4为周期的函数f(x)=$\left\{\begin{array}{l}{λ\sqrt{1-{x}^{2}}(x∈(-1,1])}\\{3-3|x-2|(x∈(1,3])}\end{array}\right.$(其中λ>0),若方程f(x)=x恰有5个实数解,则λ的取值范围是(  )
A.(4,8)B.(4,3$\sqrt{7}$)C.($\sqrt{15}$,3$\sqrt{7}$)D.($\sqrt{15}$,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A为△ABC的内角,在log2cosA有意义的条件下,事件“log2cosA<-1”发生的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)(-2-i)(3-2i)                  
(2)$\frac{2+2i}{{{{(1+i)}^2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义运算:x•y=$\left\{\begin{array}{l}x,x≤y\\ y,x>y\end{array}$,若|m+1|•|m|=|m+1|,则实数m的取值范围是m$≤-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如表所示:
大学
人数812812
从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.
(1)求各大学抽取的人数;
(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.

查看答案和解析>>

同步练习册答案