【题目】设数列的前n项和为,,且对任意正整数n,点(,)在直线上.
(1)求数列的通项公式;
(2)是否存在实数λ,使得数列{ }为等差数列?若存在,求出λ的值;若不存在,请说明理由;
【答案】(1)an=()n-1;(2)λ=2.
【解析】试题分析:(Ⅰ)利用数列{an}的前n项Sn与an的关系得到数列相邻项之间的关系式,为等比数列,进而确定出其通项公式;
(Ⅱ)确定出数列{an}的前n项和为Sn的表达式是解决本题的关键,数列为等差数列首先保证其前3项满足等差数列的关系,得出关于λ的方程,从而确定出λ的值.
试题解析:
(1)由2an+1+Sn-2=0①
当n≥2时2an+Sn-1-2=0② ∴2an+1-2an+an=0 ∴= (n≥2)
∵a1=1,2a2+a1=2a2= ∴{an}是首项为1,公比为的等比数列,
∴an=()n-1.
(2)Sn=2-
若为等差数列,则S1+λ+,S2+2λ+,S3+3λ+成等差数列,∴2(S2+2λ+)=S1+λ+S3+ ∴λ=2,经检验知为等差数列。
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出了四个类比推理:
①为实数,若则;类比推出: 为复数,若则.
② 若数列是等差数列, ,则数列也是等差数列;类比推出:若数列是各项都为正数的等比数列, ,则数列也是等比数列.
③ 若则; 类比推出:若为三个向量,则.
④ 若圆的半径为,则圆的面积为;类比推出:若椭圆的长半轴长为,短半轴长为,则椭圆的面积为.上述四个推理中,结论正确的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点在直线上,且抛物线截直线所得的弦的长为.
(Ⅰ)求抛物线的方程和的值.
(Ⅱ)以弦为底边,以轴上点为顶点的三角形面积为,求点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ,过点作圆的切线,切点分别为, ,直线恰好经过椭圆的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,过椭圆的右焦点作两条互相垂直的弦, ,设, 的中点分别为, ,证明:直线必过定点,并求此定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式ax2+5x+c>0的解集为{x| <x< },
(1)求a,c的值;
(2)解关于x的不等式ax2+(ac+b)x+bc≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,动圆与圆外切,且与直线相切,记圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设过定点(为非零常数)的动直线与曲线交于两点,问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值.若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com