精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(ωx+ )(ω>0)的最小正周期为π,则该函数的图象(
A.关于直线x= 对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于点( ,0)对称

【答案】B
【解析】解:∵T= =π,
∴ω=2,于是f(x)=sin(2x+ ),
∵f(x)在对称轴上取到最值,
∴f( )=sinπ≠±1,故A不对;
f(﹣ )=sin0≠±1,故C不对;
又∵f(x)=sin(2x+ )的对称中心的横坐标由2x+ =kπ得:x= ,当k=1时,x=
∴( ,0)为其一个对称中心.
故选B.
【考点精析】解答此题的关键在于理解五点法作函数y=Asin(ωx+φ)的图象的相关知识,掌握描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?

(1)4整除;

(2)21 034大的偶数;

(3)左起第二、四位是奇数的偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+ )(ω>0)的最小正周期为π,则该函数的图象(
A.关于直线x= 对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex2(x2-3).

(1)求曲线yf(x)在点(0,f(0))处的切线方程;

(2)求函数yf(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示:

分类

杂质高

杂质低

旧设备

37

121

新设备

22

202

根据以上数据,则(  )

A. 含杂质的高低与设备改造有关

B. 含杂质的高低与设备改造无关

C. 设备是否改造决定含杂质的高低

D. 以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.

(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.

查看答案和解析>>

同步练习册答案