【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C 与y 轴交于A,B 两点,且|AB|=2.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设点P是椭圆C上的一个动点,且点P在y轴的右侧.直线PA,PB与直线x=4分别交于M,N两点.若以MN为直径的圆与x 轴交于两点E,F,求点P横坐标的取值范围及|EF|的最大值.
【答案】解:(Ⅰ)由题意可得,2b=2,即b=1,
,得 ,
解得a2=4,
椭圆C的标准方程为 ;
(Ⅱ)方法一、设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),
所以 ,直线PA的方程为 ,
同理:直线PB的方程为 ,
直线PA与直线x=4的交点为 ,
直线PB与直线x=4的交点为 ,
线段MN的中点 ,
所以圆的方程为 ,
令y=0,则 ,
因为 ,所以 ,
所以 ,
设交点坐标(x1 , 0),(x2 , 0),可得x1=4+ ,x2=4﹣ ,
因为这个圆与x轴相交,该方程有两个不同的实数解,
所以 ,解得 .
则 ( )
所以当x0=2时,该圆被x轴截得的弦长为最大值为2.
方法二:设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),
所以 ,直线PA的方程为 ,
同理:直线PB的方程为 ,
直线PA与直线x=4的交点为 ,
直线PB与直线x=4的交点为 ,
若以MN为直径的圆与x轴相交,
则 ,
即 ,
即 .
因为 ,所以 ,
代入得到 ,解得 .
该圆的直径为 ,
圆心到x轴的距离为 ,
该圆在x轴上截得的弦长为 ;
所以该圆被x轴截得的弦长为最大值为2.
方法三:设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),
所以 ,直线PA的方程为 ,
同理:直线PB的方程为 ,
直线PA与直线x=4的交点为 ,
直线PB与直线x=4的交点为 ,
所以 ,
圆心到x轴的距离为 ,
若该圆与x轴相交,则 ,
即 ,
因为 ,所以 ,
所以 ,解得 ,
该圆在x轴上截得的弦长为 ;
所以该圆被x轴截得的弦长为最大值为2
【解析】(Ⅰ)由题意可得,2b=2,再由椭圆的离心率公式和a,b,c的关系,解得a=2,进而得到椭圆方程;(Ⅱ)方法一、设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),求出直线PA,PB的方程,与直线x=4的交点M,N,可得MN的中点,圆的方程,令y=0,求得与x轴的交点坐标,运用弦长公式,结合 .即可得到所求最大值;
方法二、设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),求出直线PA,PB的方程,与直线x=4的交点M,N,以MN为直径的圆与x轴相交,可得yMyN<0,求得 ,再由弦长公式,可得最大值;
方法三、设P(x0 , y0)(0<x0≤2),A(0,1),B(0,﹣1),求出直线PA,PB的方程,与直线x=4的交点M,N,可得MN的长度,由直线和圆相交,可得 ,再由弦长公式,可得最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C1:(x﹣1)2+y2=2,圆C2:(x﹣m)2+(y+m)2=m2 . 圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)上一点P( ,m)到准线的距离与到原点O的距离相等,抛物线的焦点为F.
(1)求抛物线的方程;
(2)若A为抛物线上一点(异于原点O),点A处的切线交x轴于点B,过A作准线的垂线,垂足为点E.试判断四边形AEBF的形状,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对其亲属30人的饮食习惯进行了一次调查,并用下图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)
(1)根据以上数据完成下面的2×2列联表:
主食 蔬菜 | 主食 肉类 | 总计 | |
50岁以下 | |||
50岁以上 | |||
总计 |
(2)能否在犯错误的概率不超过0.010的前提下认为“其亲属的饮食习惯与年龄有关”?并写出简要分析.
附参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线l的参数方程为:(为参数).
(1)求圆和直线l的极坐标方程;
(2)点的极坐标为,直线l与圆相交于A,B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+ )(ω>0)的最小正周期为π,则该函数的图象( )
A.关于直线x= 对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于点( ,0)对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com