精英家教网 > 高中数学 > 题目详情
已知|
a
|=6
3
,|
b
|=1,
a
b
=-9,则
a
b
的夹角是
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:
a
b
的夹角为θ,θ∈[0,π],由夹角公式可儿cosθ=
a
b
|
a
||
b
|
,代值计算可得答案.
解答: 解:设
a
b
的夹角为θ,θ∈[0,π]
则cosθ=
a
b
|
a
||
b
|
=
-9
6
3
×1
=-
3
2

a
b
的夹角θ=
6

故答案为:
6
点评:本题考查数量积与向量的夹角,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2=r2(r>0),直线l:(2m+1)x+(m+1)y-6m-4=0(m∈R)
(1)当r=5时,若坐标原点O到直线l的距离最大,求直线l的方程
(2)当r=2时,设点P(X0,Y0)是(1)中直线l上的点,若圆上存在点Q使得∠OPQ=30°,求X0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=
π
6
,B=
2
3
π,b=12,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若非零向量
a
b
,满足|
a
+
b
|=|
b
|
a
⊥(
a
b
)
,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间将10名技工平均分为甲、乙两组来加工某种零件,在单位时间内每个技工加工零件若干个,其中合格零件的个数如表:
1号2号3号4号5号
甲组457910
乙组56789
(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组  技工的技术水平;
(2)评审组从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过14件,则称该车间“生产率高效”,求该车间“生产率高效”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,内角A、B、C的对应边分别是a、b、c,若c=
6
,cosB=
1
3
,设f(x)=cos(2x+
π
3
)+sin2
x,f(
C
2
)=-
1
4
,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:|2x-3|>1,命题q:log
1
2
(x2+x-5)<0,则?p是?q的(  )条件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

计算
(1)已知tanx=2,求
cosx+sinx
cosx-sinx
的值;
(2)
cos(α-
π
2
)
sin(
5
2
π+α)
•sin(α-2π)•cos(2π-α).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|y=lo
g
(x+1)
2
}
,集合B={y|y=
1
x
,x>3}
,则A∩B=(  )
A、(
1
3
,+∞)
B、(0,
1
3
)
C、(-1,+∞)
D、(-1,
1
3
)

查看答案和解析>>

同步练习册答案