精英家教网 > 高中数学 > 题目详情
证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.
证明:函数f(x)的定义域为R,
对于任意的x∈R,都有f(-x)=-2(-x)2+1=-2x2+1=f(x),
∴f(x)是偶函数;
在区间[0,+∞)上任取x1,x2,且x1<x2,则有
f(x1)-f(x2)=(-2x12+1)-(-2x22+1)=2(x22-x12)=2(x2+x1)(x2-x1),
∵x1,x2∈[0,+∞),x1<x2,∴x2-x1>0,x1+x2>0,
即2(x2-x1)•(x1+x2)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
所以f(x)在[0,+∞)上是减少的.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=1-
4
2ax+a
(a>0且a≠1)是定义在(-1,1)上的奇函数.
(1)求a的值
(2)判断函数f(x)的单调性(不用证明),并解关于t的不等式f(1-t)+f(3-2t)<0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知偶函数f(x)在[0,+∞)上是增函数,则不等式f(2x-1)<f(
1
3
)
的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)判断函数f(x)=
2x-1
x-1
在区间(1,+∞)上的单调性,并用定义法给出证明;
(2)判断函数g(x)=x3+
1
x
的奇偶性,并用定义法给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=
1-x2
|x+1|+|x-2|
是 ______(填奇函数,偶函数,非奇非偶函数,奇函数又是偶函数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=ax2+bx+1(a、b∈R)
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)在(1)的条件下,若f(x)≤m2-2am+2对所有x∈[-1,
2
-1],a∈[-1,1]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)是定义在R上的偶函数,在(-∞,0]上为减函数,且f(4)=0,则使得xf(x)<0的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设x,y为正数,求(x+y)(
1
x
+
4
y
)
的最小值,并写出取得最小值的条件.
(2)设a>b>c,若
1
a-b
+
1
b-c
n
a-c
恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的函数f(x)满足f(2-x)为奇函数,函数f(x+3)关于直线x=1对称,则函数f(x)的最小正周期为(  )
A.4B.8C.12D.16

查看答案和解析>>

同步练习册答案