精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
4
2ax+a
(a>0且a≠1)是定义在(-1,1)上的奇函数.
(1)求a的值
(2)判断函数f(x)的单调性(不用证明),并解关于t的不等式f(1-t)+f(3-2t)<0.
(1)∵已知函数f(x)=1-
4
2ax+a
(a>0且a≠1)是定义在(-1,1)上的奇函数,
∴f(0)=1-
4
2+a
=0,∴a=2.
(2)根据a=2可得f(x)=1-
4
2×2x+2
=1-
2
2x+1
,显然在(-1,1)上是增函数.
由于t的不等式f(1-t)+f(3-2t)<0,可得f(1-t)<-f(3-2t)=f(2t-3).
-1<1-t<1
-1<2t-3<1
1-t<2t-3

解得
4
3
<t<2,故不等式的解集为(
4
3
,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)函数的定义域和值域均为[-1,1];(2)函数的图象关于原点成中心对称;(3)函数在定义域上单调递增;(4)Af(x)dx=0(其中A为函数的定义域);(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.请写出所有关于函数f(x)性质正确描述的序号______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(ex+a)(e是自然对数的底数,a为常数)是实数集R上的奇函数,若函数g(x)=lnx-f(x)(x2-2ex+m)在(0,+∞)上有两个零点,则实数m的取值范围是(  )
A.(
1
e
,e2+
1
e
B.(0,e2+
1
e
C.(e2+
1
e
,+∞)
D.(-∞,e2+
1
e

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且f(x+3)f(x)=-1,f(-2)=1,则f(2012)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二次函数f(x)=x2+2ax+2a+1.
(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;
(2)讨论函数f(x)在区间[0,1]上的单调性;
(3)若对任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x+1)为偶函数,且f(x)在(1,+∞)上递减,设a=f(log210),b=f(log310),c=f(0.10.2),则a,b,c的大小关系正确的是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax2-(1+a)x+1

(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤
3
,若存在,求实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)一个矩形的面积为8,如果此矩形的对角线长为y,一边长为x,试把y表示成x的函数.
(2)证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.

查看答案和解析>>

同步练习册答案