精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)在[0,+∞)上是增函数,则不等式f(2x-1)<f(
1
3
)
的解集是______.
因为f(x)是偶函数,所以f(2x-1)<f(
1
3
)
?f(|2x-1|)<f(
1
3
),
又f(x)在[0,+∞)上是增函数,
所以|2x-1|<
1
3
,解得
1
3
<x<
2
3

故答案为:{x|
1
3
<x<
2
3
}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)函数的定义域和值域均为[-1,1];(2)函数的图象关于原点成中心对称;(3)函数在定义域上单调递增;(4)Af(x)dx=0(其中A为函数的定义域);(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.请写出所有关于函数f(x)性质正确描述的序号______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
mx+n
1+x2
是定义在[-
1
2
1
2
]上是奇函数,且f(-
1
4
)=
8
17

(1)确定函数f(x)解析式
(2)用定义证明函数f(x)在[
1
2
1
2
]上是减函数
(3)若实数t满足f(
t
3
)+f(t+1)<0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且f(x+3)f(x)=-1,f(-2)=1,则f(2012)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)一个矩形的面积为8,如果此矩形的对角线长为y,一边长为x,试把y表示成x的函数.
(2)证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x2+2x+3,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且满足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
4-x2
|x+3|-3
的图象关于(  )
A.y轴对称B.直线y=x对称
C.坐标原点对称D.x轴对称

查看答案和解析>>

同步练习册答案